MS-PS2-1 Motion and Stability: Forces and Interactions

MS-PS2-1   Motion and Stability: Forces and Interactions

Students who demonstrate understanding can:

MS-PS2-1. Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.* [Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.] [Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.]
The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

  • Apply scientific ideas or principles to design an object, tool, process or system.

Disciplinary Core Ideas

PS2.A: Forces and Motion

Crosscutting Concepts

Systems and System Models

   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

        Connections to Engineering,Technology,

                     and Applications of Science

 

Influence of Science, Engineering, and Technology on Society and the Natural World

  • The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

Connections to other DCIs in this grade-band:

MS.PS3.C

Articulation of DCIs across grade-bands:

3.PS2.A ; HS.PS2.A

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS2-1)
RST.6-8.3Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS2-1)
WHST.6-8.7Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS2-1)
Mathematics -
MP.2 Reason abstractly and quantitatively. (MS-PS2-1)
6.NS.C.5Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS2-1)
6.EE.A.2Write, read, and evaluate expressions in which letters stand for numbers. (MS-PS2-1)
7.EE.B.3Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form, using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-PS2-1)
7.EE.B.4Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-PS2-1)

MS-PS2-1   Motion and Stability: Forces and Interactions

Students who demonstrate understanding can:

MS-PS2-1. Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.* [Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.] [Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.]
The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

  • Apply scientific ideas or principles to design an object, tool, process or system.

Disciplinary Core Ideas

PS2.A: Forces and Motion

Crosscutting Concepts

Systems and System Models

   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

        Connections to Engineering,Technology,

                     and Applications of Science

 

Influence of Science, Engineering, and Technology on Society and the Natural World

  • The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

Connections to other DCIs in this grade-band:

MS.PS3.C

Articulation of DCIs across grade-bands:

3.PS2.A ; HS.PS2.A

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS2-1)
RST.6-8.3Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS2-1)
WHST.6-8.7Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS2-1)
Mathematics -
MP.2 Reason abstractly and quantitatively. (MS-PS2-1)
6.NS.C.5Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS2-1)
6.EE.A.2Write, read, and evaluate expressions in which letters stand for numbers. (MS-PS2-1)
7.EE.B.3Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form, using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-PS2-1)
7.EE.B.4Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-PS2-1)

MS-PS2-1   Motion and Stability: Forces and Interactions

Students who demonstrate understanding can:

MS-PS2-1. Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.* [Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.] [Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.]
The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

  • Apply scientific ideas or principles to design an object, tool, process or system.

Disciplinary Core Ideas

PS2.A: Forces and Motion

Crosscutting Concepts

Systems and System Models

   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

        Connections to Engineering,Technology,

                     and Applications of Science

 

Influence of Science, Engineering, and Technology on Society and the Natural World

  • The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

Connections to other DCIs in this grade-band:

MS.PS3.C

Articulation of DCIs across grade-bands:

3.PS2.A ; HS.PS2.A

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS2-1)
RST.6-8.3Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS2-1)
WHST.6-8.7Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS2-1)
Mathematics -
MP.2 Reason abstractly and quantitatively. (MS-PS2-1)
6.NS.C.5Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS2-1)
6.EE.A.2Write, read, and evaluate expressions in which letters stand for numbers. (MS-PS2-1)
7.EE.B.3Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form, using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-PS2-1)
7.EE.B.4Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-PS2-1)

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.