Middle School Life Science

Students in middle school develop understanding of key concepts to help them make sense of life science. The ideas build upon students' science understanding from earlier grades and from the disciplinary core ideas, science and engineering practices, and crosscutting concepts of other experiences with physical and earth sciences. There are four life science disciplinary core ideas in middle school: 1) From Molecules to Organisms: Structures and Processes, 2) Ecosystems: Interactions, Energy, and Dynamics, 3) Heredity: Inheritance and Variation of Traits, 4) Biological Evolution: Unity and Diversity. The performance expectations in middle school blend the core ideas with scientific and engineering practices and crosscutting concepts to support students in developing usable knowledge across the science disciplines. While the performance expectations in middle school life science couple particular practices with specific disciplinary core ideas, instructional decisions should include use of many science and engineering practices integrated in the performance expectations.

The performance expectations in **LS1: From Molecules to Organisms: Structures and Processes** help students formulate an answer to the question, “How can one explain the ways cells contribute to the function of living organisms.” The LS1 Disciplinary Core Idea from the NRC Framework is organized into four sub-ideas: Structure and Function, Growth and Development of Organisms, Organization for Matter and Energy Flow in Organisms, and Information Processing. Students can gather information and use this information to support explanations of the structure and function relationship of cells. They can communicate understanding of cell theory. They have a basic understanding of the role of cells in body systems and how those systems work to support the life functions of the organism. The understanding of cells provides a context for the plant process of photosynthesis and the movement of matter and energy needed for the cell. Students can construct an explanation for how environmental and genetic factors affect growth of organisms. They can connect this to the role of animal behaviors in reproduction of animals as well as the dependence of some plants on animal behaviors for their reproduction. Crosscutting concepts of cause and effect, structure and function, and matter and energy are called out as organizing concepts for the core ideas about processes of living organisms.

The performance expectations in **LS2: Interactions, Energy, and Dynamics Relationships in Ecosystems** help students formulate an answer to the question, “How does a system of living and non-living things operate to meet the needs of the organisms in an ecosystem?” The LS2 Disciplinary Core Idea is divided into three sub-ideas: Interdependent Relationships in Ecosystems; Cycles of Matter and Energy Transfer in Ecosystems; and Ecosystem Dynamics, Functioning, and Resilience. Students can analyze and interpret data, develop models, and construct arguments and demonstrate a deeper understanding of resources and the cycling of matter and the flow of energy in ecosystems. They can also study patterns of the interactions among organisms within an ecosystem. They consider biotic and abiotic factors in an ecosystem and the effects these factors have on population. They evaluate competing design solutions for maintaining biodiversity and ecosystem services.

The performance expectations in **LS3: Heredity: Inheritance and Variation of Traits** help students formulate an answer to the question, “How do living organisms pass traits from one generation to the next?” The LS3 Disciplinary Core Idea from the NRC Framework includes two sub-ideas: Inheritance of Traits, and Variation of Traits. Students can use models to describe
ways gene mutations and sexual reproduction contribute to genetic variation. Crosscutting concepts of cause and effect and structure and function provide students with a deeper understanding of how gene structure determines differences in the functioning of organisms.

The performance expectations in **LS4: Biological Evolution: Unity and Diversity** help students formulate an answer to the question, “How do organisms change over time in response to changes in the environment?” The LS4 Disciplinary Core Idea is divided into four sub-ideas: Evidence of Common Ancestry and Diversity, Natural Selection, Adaptation, and Biodiversity and Humans. Students can construct explanations based on evidence to support fundamental understandings of natural selection and evolution. They can use ideas of genetic variation in a population to make sense of organisms surviving and reproducing, hence passing on the traits of the species. They are able to use fossil records and anatomical similarities of the relationships among organisms and species to support their understanding. Crosscutting concepts of patterns and structure and function contribute to the evidence students can use to describe biological evolution.
Students who demonstrate understanding can:

MS-LS1. Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. [Clarification Statement: Emphasis is on developing evidence that living things are made of cells, distinguishing between living and non-living cells, and understanding that living things may be made of one cell or many and varied cells.]

MS-LS1-2. Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. [Clarification Statement: Emphasis is on the cell functioning as a whole system and the primary role of identified parts of the cell, specifically the nucleus, chloroplasts, mitochondria, cell membrane, and cell wall.] [Assessment Boundary: Assessment of organelle structure/function relationships is limited to the cell wall and cell membrane. Assessment of the function of the other organelles is limited to their relationship to the whole cell. Assessment does not include the biochemical function of cells or cell parts.]

MS-LS1-3. Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. [Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.]

MS-LS1-4. Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds; and, creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]

MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. [Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.] [Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.]

MS-LS1-6. Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. [Clarification Statement: Emphasis is on tracing movement of matter and flow of energy.] [Assessment Boundary: Assessment does not include the biochemical mechanisms of photosynthesis.]

MS-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. [Clarification Statement: Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.] [Assessment Boundary: Assessment does not include details of the chemical reactions for photosynthesis or respiration.]

MS-LS1-8. Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. [Assessment Boundary: Assessment does not include mechanisms for the transmission of this information.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

- Developing and Using Models:
 - Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
 - Develop and use a model to describe phenomena. (MS-LS1-2)
 - Develop a model to describe unobservable mechanisms. (MS-LS1-7)

- Planning and Carrying Out Investigations:
 - Planning and carrying out investigations in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions.
 - Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of an investigation. (MS-LS1-1)

- Constructing Explanations and Designing Solutions:
 - Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.
 - Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-LS1-5), (MS-LS1-6)

Disciplinary Core Ideas

LS1.A: Structure and Function

- All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular). (MS-LS1-1)
- Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell. (MS-LS1-2)
- In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions. (MS-LS1-3)

LS1.B: Growth and Development of Organisms

- Animals engage in characteristic behaviors that increase the odds of reproduction. (MS-LS1-4)
- Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction. (MS-LS1-4)
- Genetic factors as well as local conditions affect the growth of the adult plant. (MS-LS1-5)

LS1.C: Organization for Matter and Energy Flow in Organisms

- Plants, algae (including phytoplankton), and many microorganisms use the energy from light to make sugars (food) from carbon dioxide from the atmosphere and water through the process of photosynthesis, which also releases oxygen. These sugars can be used immediately or stored for growth or later use. (MS-LS1-6)

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships may be used to predict phenomena in natural systems. (MS-LS1-8)
- Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability. (MS-LS1-4), (MS-LS1-5)

Scale, Proportion, and Quantity

- Phenomena that can be observed at one scale may not be observable at another scale. (MS-LS1-1)

Systems and System Models

- Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. (MS-LS1-3)
- Matter is conserved because atoms are conserved in physical and chemical processes. (MS-LS1-7)
- Within a natural system, the transfer of energy drives the motion and/or cycling of matter. (MS-LS1-6)

Structure and Function

- Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts, therefore complex natural and designed structures/systems can be analyzed to determine how they function. (MS-LS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

May 2013 ©2013 Achieve, Inc. All rights reserved
MS-LS1 From Molecules to Organisms: Structures and Processes

- **Obtaining, Evaluating, and Communicating Information**
 - 6 builds on K-5 experiences and progresses to building logical arguments based on a set of claim(s), facts, evidence, predictions, or hypotheses. (MS-LS1-3)
 - Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-LS1-4)

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence
- Science knowledge is based upon logical connections between evidence and explanations. (MS-LS1-6)

<table>
<thead>
<tr>
<th>Common Core State Standards Connections:</th>
<th>ELA/Literacy –</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST.6-8.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts. (MS-LS1-3),(MS-LS1-4),(MS-LS1-5),(MS-LS1-6)</td>
</tr>
<tr>
<td>RST.6-8.2</td>
<td>Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-5),(MS-LS1-6)</td>
</tr>
<tr>
<td>RST.6-8.3</td>
<td>Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. (MS-LS1-3),(MS-LS1-4)</td>
</tr>
<tr>
<td>WHST.6-8.1</td>
<td>Write arguments focused on discipline content. (MS-LS1-3),(MS-LS1-4)</td>
</tr>
<tr>
<td>WHST.6-8.2</td>
<td>Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-5),(MS-LS1-6)</td>
</tr>
<tr>
<td>WHST.6-8.3</td>
<td>Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-LS1-1)</td>
</tr>
<tr>
<td>WHST.6-8.8</td>
<td>Gather relevant information from multiple print and digital sources; assess the credibility of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and providing basic bibliographic information for sources. (MS-LS1-8)</td>
</tr>
<tr>
<td>WHST.6-8.9</td>
<td>Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS1-5),(MS-LS1-6)</td>
</tr>
<tr>
<td>SL.8.5</td>
<td>Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-LS1-2),(MS-LS1-7)</td>
</tr>
<tr>
<td>Mathematics – 6.EE.C.9</td>
<td>Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. (MS-LS1-1),(MS-LS1-2),(MS-LS1-3),(MS-LS1-6)</td>
</tr>
<tr>
<td>6.SP.A.2</td>
<td>Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. (MS-LS1-4),(MS-LS1-5)</td>
</tr>
<tr>
<td>6.SP.B.4</td>
<td>Summarize numerical data sets in relation to their context. (MS-LS1-4),(MS-LS1-5)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.
MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Students who demonstrate understanding can:

MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations in an ecosystem. [Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.]

MS-LS2-2. Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. [Clarification Statement: Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and their abiotic components of ecosystems. Examples of interactions could include competitive, predatory, and mutualistic.]

MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system. [Assessment Boundry: Assessment does not include the use of chemical reactions to describe the processes.]

MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. [Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]

MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services.* [Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models
Modeling is used to make predictions, test explanations, and generate solutions (MS-LS2-3).

Analyzing and Interpreting Data
Data analysis is used to find patterns, answer questions, test ideas, and evaluate models (MS-LS2-5).

Constructing Explanations and Designing Solutions
Constructing explanations and developing solutions supported by evidence are complex processes that could include multiple steps and require revising explanations and designs in light of new evidence (MS-LS2-2).

Engaging in Argument from Evidence
Engaging in argument from evidence is complex and requires the ability to integrate and evaluate information and evidence (MS-LS2-1).

Disciplinary Core Ideas

LS2A: Interdependent Relationships in Ecosystems
- Organisms, and populations of organisms, are dependent on their environmental interactions, both with other living things and with nonliving factors. (MS-LS2-1)
- In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which subsequently constrains their growth and reproduction. (MS-LS2-1)
- Growth of populations and population increases are limited by access to resources. (MS-LS2-1)
- Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for survival. Although the species involved in these competitive, predatory, and mutually beneficial interactions vary across ecosystems, the patterns of interactions of organisms with their environment, both living and nonliving, are shared. (MS-LS2-2)

LS2B: Cycle of Matter and Energy Transfer in Ecosystems
- Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the interactions among organisms interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organic molecules in an ecosystem are cycled between the living parts of the ecosystem and nonliving parts. (MS-LS2-3)

LS2C: Ecosystem Dynamics, Functioning, and Resilience
- Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. (MS-LS2-3)
- Biodiversity describes the variety of species found in Earth’s terrestrial and oceanic ecosystems. The completeness or integrity of an ecosystem’s biodiversity is often used as a measure of its health. (MS-LS2-5)

LS2D: Biodiversity and Humans
- Changes in biodiversity can influence humans’ resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary to MS-LS2-5)

ETS1.B: Developing Possible Solutions
- There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (secondary to MS-LS2-5)

Crosstowning Concepts

Patterns
- Patterns can be used to identify cause and effect relationships. (MS-LS2-2)

Cause and Effect
- Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-LS2-1)

Energy and Matter
- The transfer of energy can be tracked as energy flows through a natural system. (MS-LS2-3)

Stability and Change
- Small changes in one part of a system might cause large changes in another part. (MS-LS2-4)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World
- The use of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus, technology use varies from region to region and over time. (MS-LS2-5)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS2-3)

Science Addresses Questions About the Natural and Material World
- Science knowledge can describe consequences of actions but does not make the decisions that society takes. (MS-LS2-5)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

May 2013 ©2013 Achieve, Inc. All rights reserved
MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

<table>
<thead>
<tr>
<th>Common Core State Standards Connections:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELA/Literacy –</td>
</tr>
<tr>
<td>RST.6-8.1</td>
</tr>
<tr>
<td>RST.6-8.7</td>
</tr>
<tr>
<td>RST.6-8.8</td>
</tr>
<tr>
<td>RI.8.8</td>
</tr>
<tr>
<td>WHST.6-8.1</td>
</tr>
<tr>
<td>WHST.6-8.2</td>
</tr>
<tr>
<td>WHST.6-8.9</td>
</tr>
<tr>
<td>SL.8.1</td>
</tr>
<tr>
<td>SL.8.4</td>
</tr>
<tr>
<td>SL.8.5</td>
</tr>
<tr>
<td>Mathematics –</td>
</tr>
<tr>
<td>MP.4</td>
</tr>
<tr>
<td>6.RP.A.3</td>
</tr>
<tr>
<td>6.EE.C.9</td>
</tr>
<tr>
<td>6.SP.B.5</td>
</tr>
</tbody>
</table>

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.
MS-LS3 Heredity: Inheritance and Variation of Traits

MS-LS3 Heredity: Inheritance and Variation of Traits

Students who demonstrate understanding can:

MS-LS3-1. Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. [Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.]

MS-LS3-2. Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

- Develop and use a model to describe phenomena. (MS-LS3-1, MS-LS3-2)

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms
- Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring. (secondary to MS-LS3-2)

LS3.A: Inheritance of Traits
- Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes (mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits. (MS-LS3-1)
- Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited. (MS-LS3-2)

LS3.B: Variation of Traits
- In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other. (MS-LS3-2)
- In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some neutral to the organism. (MS-LS3-1)

Crosscutting Concepts

Cause and Effect
- Cause and effect relationships may be used to predict phenomena in natural systems. (MS-LS3-2)

Structure and Function
- Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the shapes, composition, and relationships among its parts, therefore complex natural and designed structures/systems can be analyzed to determine how they function. (MS-LS3-1)

Connections to other DCIs in this grade-band

- **MS.LS1.A** (MS-LS3-1), **MS.LS4.A** (MS-LS3-1)

Articulation across grade-bands

- **3.LS3.A** (MS-LS3-1, MS-LS3-2), **3.LS3.B** (MS-LS3-1, MS-LS3-2), **HS.LS1.A** (MS-LS3-1), **HS.LS1.B** (MS-LS3-1, MS-LS3-2), **HS.LS3.A** (MS-LS3-1, MS-LS3-2), **HS.LS3.B** (MS-LS3-1, MS-LS3-2), **HS.LS3.C** (MS-LS3-1, MS-LS3-2)

Common Core State Standards Connections:

ELA/Literacy –

- **RST.6-8.1** Cite specific textual evidence to support analysis of science and technical texts. (MS-LS3-1, MS-LS3-2)
- **RST.6-8.4** Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. (MS-LS3-1, MS-LS3-2)
- **RST.6-8.7** Integrate qualitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS3-1, MS-LS3-2)

Mathematics –

- **MP.4** Model with mathematics. (MS-LS3-2)
- **6.SP.B.5** Summarize numerical data sets in relation to their context. (MS-LS3-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

May 2013 ©2013 Achieve, Inc. All rights reserved.
MS-LS4 Biological Evolution: Unity and Diversity

Students who demonstrate understanding can:

MS-LS4.1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. [Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geologic eras in the fossil record.]

MS-LS4.2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.]

MS-LS4.3. Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. [Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.] [Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.]

MS-LS4.4. Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. [Clarification Statement: Emphasis is on using simple probability statements and proportional reasoning to construct explanations.]

MS-LS4.5. Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. [Clarification Statement: Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy); and, on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.]

MS-LS4.6. Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. [Clarification Statement: Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.] [Assessment Boundary: Assessment does not include Hardy Weinberg calculations.]

Science and Engineering Practices

Analyzing and Interpreting Data

- Analyzing data in 6–8 builds on K–5 experiences and progressions to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. (MS-LS4-3)
- Analyze and interpret data to identify linear and nonlinear relationships. (MS-LS4-3)
- Analyze and interpret data to determine similarities and differences in findings. (MS-LS4-1)

Using Mathematics and Computational Thinking

- Mathematical and computational thinking in 6–8 builds on K–5 experiences and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.
- Use mathematical representations to support scientific conclusions and design solutions. (MS-LS4-6)

Constructing Explanations and Designing Solutions

- Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. (MS-LS4-4)
- Apply scientific ideas to construct an explanation for real-world phenomena, events, or scenes. (MS-LS4-2)
- Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena. (MS-LS4-4)

Obtaining, Evaluating, and Communicating Information

- Gathering, reading, and synthesizing information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-LS4-5)

Disciplinary Core Ideas

LS4.A: Evidence of Common Ancestry and Diversity

- The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth. (MS-LS4-1)
- Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent. (MS-LS4-2)
- Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy. (MS-LS4-3)

LS4.B: Natural Selection

- Natural selection leads to the predominance of certain traits in a population, and the suppression of others. (MS-LS4-4)
- In artificial selection, humans have the capacity to influence certain characteristics of organisms by selective breeding. One can choose desired parental traits determined by genes, which are then passed on to offspring. (MS-LS4-5)

LS4.C: Adaptation

- Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes. (MS-LS4-6)

Crosscutting Concepts

Patterns

- Patterns can be used to identify cause and effect relationships. (MS-LS4-2)
- Graphs, charts, and images can be used to identify patterns in data. (MS-LS4-1),(MS-LS4-3)

Cause and Effect

- Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability. (MS-LS4-4),(MS-LS4-5),(MS-LS4-6)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

- Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. (MS-LS4-5)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

- Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS4-1),(MS-LS4-2)

Science Addresses Questions About the Natural and Material World

- Science knowledge can describe consequences of actions but does not make the decisions that society takes. (MS-LS4-5)

Connections to other DCIs in this grade-band: **MS-LS2.A** (MS-LS4-1),(MS-LS4-5); **MS-LS2.C** (MS-LS4-6); **MS-LS3.A** (MS-LS4-2),(MS-LS4-3); **MS-LS3.B** (MS-LS4-2),(MS-LS4-4); **MS-LS3.C** (MS-LS4-2),(MS-LS4-6); **MS-LS3.D** (MS-LS4-4); **MS-ESS1.C** (MS-LS4-1),(MS-LS4-2),(MS-LS4-6); **MS-ESS2.B** (MS-LS4-1)

Articulation across grade-bands: **3.LS3.B** (MS-LS4-4); **3.LS4.A** (MS-LS4-1),(MS-LS4-2); **3.LS4.B** (MS-LS4-5); **3.LS4.C** (MS-LS4-6); **HS.LS2.A** (MS-LS4-4),(MS-LS4-6); **HL.LS4.2** (MS-LS4-6); **HL.LS4.3** (MS-LS4-5); **HS.LS4.4** (MS-LS4-1),(MS-LS4-2),(MS-LS4-3); **HL.LS4.5** (MS-LS4-6); **HL.LS4.6** (MS-LS4-4),(MS-LS4-6); **HL.LS4.7** (MS-LS4-4); **HL.LS4.8** (MS-LS4-4)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.
MS-LS4 Biological Evolution: Unity and Diversity

<table>
<thead>
<tr>
<th>Common Core State Standards Connections:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELA/Literacy – RST.6-8.1</td>
</tr>
<tr>
<td>RST.6-8.7</td>
</tr>
<tr>
<td>RST.6-8.9</td>
</tr>
<tr>
<td>WHST.6-8.2</td>
</tr>
<tr>
<td>WHST.6-8.8</td>
</tr>
<tr>
<td>WHST.6-8.9</td>
</tr>
<tr>
<td>SL.8.1</td>
</tr>
<tr>
<td>SL.8.4</td>
</tr>
<tr>
<td>Mathematics – MP.4</td>
</tr>
<tr>
<td>6.RP.A.1</td>
</tr>
<tr>
<td>6.SP.B.5</td>
</tr>
<tr>
<td>6.EE.B.6</td>
</tr>
<tr>
<td>7.RP.A.2</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.