

*Unless otherwise specified, "descriptions" referenced in the evidence statements could include but are not limited to written, oral, pictorial, and kinesthetic descriptions.

MS-PS3-2 Energy

Students who demonstrate understanding can:

MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate's hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

•

Science and Engineering Practices

Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.

• Develop a model to describe unobservable mechanisms.

Disciplinary Core Ideas PS3.A: Definitions of Energy

 A system of objects may also contain stored (potential) energy, depending on their relative positions.

PS3.C: Relationship Between Energy and Forces

When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.

Crosscutting Concepts

Systems and System Models

 Models can be used to represent systems and their interactions – such as inputs, processes, and outputs – and energy and matter flows within systems.

Observable features of the student performance by the end of the course:		
1	Со	mponents of the model
	а	To make sense of a given phenomenon involving two objects interacting at a distance, students
		develop a model in which they identify the relevant components, including:
		i. A system of two stationary objects that interact.
		ii. Forces (electric, magnetic, or gravitational) through which the two objects interact.
		iii. Distance between the two objects.
		iv. Potential energy.
2	2 Relationships	
	а	In the model, students identify and describe* relationships between components, including:
		i. When two objects interact at a distance, each one exerts a force on the other that can cause
		energy to be transferred to or from an object.
		ii. As the relative position of two objects (neutral, charged, magnetic) changes, the potential
		energy of the system (associated with interactions via electric, magnetic, and gravitational
		forces) changes (e.g., when a ball is raised, energy is stored in the gravitational interaction
2	<u> </u>	between the Earth and the ball).
3		nnections
	а	Students use the model to provide a causal account for the idea that the amount of potential energy in
		a system of objects changes when the distance between stationary objects interacting in the system
		changes because:
		I. A force has to be applied to move two attracting objects farther apart, transferring energy to the
		System.
		ii. A force has to be applied to move two repening objects closer together, transferring energy to the system
		แกะ องอเยาก.