HS-ESS2    Earth's Systems

Students who demonstrate understanding can:

HS-ESS2-1. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth’s surface.]
HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth's surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]
HS-ESS2-3. Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection. [Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.]
HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]
HS-ESS2-5. Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]
HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]
HS-ESS2-7. Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Planning and Carrying Out Investigations

Planning and carrying out investigations in 9-12 builds on K-8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

Analyzing and Interpreting Data

Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based on empirical evidence. (HS-ESS2-3)
  • Science disciplines share common rules of evidence used to evaluate explanations about natural systems. (HS-ESS2-3)
  • Science includes the process of coordinating patterns of evidence with current theory. (HS-ESS2-3)
  • Science arguments are strengthened by multiple lines of evidence supporting a single explanation. (HS-ESS2-4)

Disciplinary Core Ideas

ESS1.B: Earth and the Solar System

  • Cyclical changes in the shape of Earth’s orbit around the sun, together with changes in the tilt of the planet’s axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary to HS-ESS2-4)

ESS2.A: Earth Materials and Systems

ESS2.B: Plate Tectonics and Large-Scale System Interactions

ESS2.C: The Roles of Water in Earth's Surface Processes

ESS2.D: Weather and Climate

ESS2.E Biogeology

PS4.A: Wave Properties

Crosscutting Concepts

Cause and Effect

Energy and Matter

Structure and Function

Stability and Change

   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

        Connections to Engineering,Technology,

                     and Applications of Science

 

Interdependence of Science, Engineering, and Technology

Influence of Engineering, Technology, and Science on Society and the Natural World

Connections to other DCIs in this grade-band:

HS.PS1.A (HS-ESS2-5),(HS-ESS2-6); HS.PS1.B (HS-ESS2-5),(HS-ESS2-6); HS.PS2.B (HS-ESS2-1),(HS-ESS2-3); HS.PS3.A (HS-ESS2-4); HS.PS3.B (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-5); HS.PS3.D (HS-ESS2-3),(HS-ESS2-6); HS.PS4.B (HS-ESS2-2); HS.LS1.C (HS-ESS2-6); HS.LS2.A (HS-ESS2-7); HS.LS2.B (HS-ESS2-2),(HS-ESS2-6); HS.LS2.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-7); HS.LS4.A (HS-ESS2-7); HS.LS4.B (HS-ESS2-7); HS.LS4.C (HS-ESS2-7); HS.LS4.D (HS-ESS2-2),(HS-ESS2-7); HS.ESS1.C (HS-ESS2-4); HS.ESS3.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6); HS.ESS3.D (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6)

Articulation of DCIs across grade-bands:

MS.PS1.A (HS-ESS2-3),(HS-ESS2-5),(HS-ESS2-6); MS.PS1.B (HS-ESS2-3); MS.PS2.B (HS-ESS2-1),(HS-ESS2-3); MS.PS3.A (HS-ESS2-3),(HS-ESS2-4); MS.PS3.B (HS-ESS2-3),(HS-ESS2-4); MS.PS3.D (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6); MS.PS4.B (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6); MS.LS1.C (HS-ESS2-4); MS.LS2.A (HS-ESS2-7); MS.LS2.B (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6); MS.LS2.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-7); MS.LS4.A (HS-ESS2-7); MS.LS4.B (HS-ESS2-7); MS.LS4.C (HS-ESS2-2),(HS-ESS2-7); MS.ESS1.C (HS-ESS2-1),(HS-ESS2-7); MS.ESS2.A (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6),(HS-ESS2-7); MS.ESS2.B (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6); MS.ESS2.C (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6),(HS-ESS2-7); MS.ESS2.D (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5); MS.ESS3.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6),(HS-ESS2-7); MS.ESS3.D (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6)

Common Core State Standards Connections:

ELA/Literacy -
RST.11-12.1Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS2-2),(HS-ESS2-3)
RST.11-12.2Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. (HS-ESS2-2)
WHST.9-12.1Write arguments focused on discipline-specific content. (HS-ESS2-7)
WHST.9-12.7Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-ESS2-5)
SL.11-12.5Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-4)
Mathematics -
MP.2Reason abstractly and quantitatively. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
MP.4Model with mathematics. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
HSN.Q.A.1Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
HSN.Q.A.2Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
HSN.Q.A.3Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6)

HS-ESS2 Earth's Systems

Students who demonstrate understanding can:

HS-ESS2-1. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth’s surface.]
HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth's surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]
HS-ESS2-3. Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection. [Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.]
HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]
HS-ESS2-5. Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]
HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]
HS-ESS2-7. Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Planning and Carrying Out Investigations

Planning and carrying out investigations in 9-12 builds on K-8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

Analyzing and Interpreting Data

Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based on empirical evidence. (HS-ESS2-3)
  • Science disciplines share common rules of evidence used to evaluate explanations about natural systems. (HS-ESS2-3)
  • Science includes the process of coordinating patterns of evidence with current theory. (HS-ESS2-3)
  • Science arguments are strengthened by multiple lines of evidence supporting a single explanation. (HS-ESS2-4)

Disciplinary Core Ideas

ESS1.B: Earth and the Solar System

  • Cyclical changes in the shape of Earth’s orbit around the sun, together with changes in the tilt of the planet’s axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary to HS-ESS2-4)

ESS2.A: Earth Materials and Systems

ESS2.B: Plate Tectonics and Large-Scale System Interactions

ESS2.C: The Roles of Water in Earth's Surface Processes

ESS2.D: Weather and Climate

ESS2.E Biogeology

PS4.A: Wave Properties

Crosscutting Concepts

Cause and Effect

Energy and Matter

Structure and Function

Stability and Change

   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

        Connections to Engineering,Technology,

                     and Applications of Science

 

Interdependence of Science, Engineering, and Technology

Influence of Engineering, Technology, and Science on Society and the Natural World

Connections to other DCIs in this grade-band:

HS.PS1.A (HS-ESS2-5),(HS-ESS2-6); HS.PS1.B (HS-ESS2-5),(HS-ESS2-6); HS.PS2.B (HS-ESS2-1),(HS-ESS2-3); HS.PS3.A (HS-ESS2-4); HS.PS3.B (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-5); HS.PS3.D (HS-ESS2-3),(HS-ESS2-6); HS.PS4.B (HS-ESS2-2); HS.LS1.C (HS-ESS2-6); HS.LS2.A (HS-ESS2-7); HS.LS2.B (HS-ESS2-2),(HS-ESS2-6); HS.LS2.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-7); HS.LS4.A (HS-ESS2-7); HS.LS4.B (HS-ESS2-7); HS.LS4.C (HS-ESS2-7); HS.LS4.D (HS-ESS2-2),(HS-ESS2-7); HS.ESS1.C (HS-ESS2-4); HS.ESS3.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6); HS.ESS3.D (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6)

Articulation of DCIs across grade-bands:

MS.PS1.A (HS-ESS2-3),(HS-ESS2-5),(HS-ESS2-6); MS.PS1.B (HS-ESS2-3); MS.PS2.B (HS-ESS2-1),(HS-ESS2-3); MS.PS3.A (HS-ESS2-3),(HS-ESS2-4); MS.PS3.B (HS-ESS2-3),(HS-ESS2-4); MS.PS3.D (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6); MS.PS4.B (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6); MS.LS1.C (HS-ESS2-4); MS.LS2.A (HS-ESS2-7); MS.LS2.B (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6); MS.LS2.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-7); MS.LS4.A (HS-ESS2-7); MS.LS4.B (HS-ESS2-7); MS.LS4.C (HS-ESS2-2),(HS-ESS2-7); MS.ESS1.C (HS-ESS2-1),(HS-ESS2-7); MS.ESS2.A (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6),(HS-ESS2-7); MS.ESS2.B (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6); MS.ESS2.C (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6),(HS-ESS2-7); MS.ESS2.D (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5); MS.ESS3.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6),(HS-ESS2-7); MS.ESS3.D (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6)

Common Core State Standards Connections:

ELA/Literacy -
RST.11-12.1Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS2-2),(HS-ESS2-3)
RST.11-12.2Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. (HS-ESS2-2)
WHST.9-12.1Write arguments focused on discipline-specific content. (HS-ESS2-7)
WHST.9-12.7Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-ESS2-5)
SL.11-12.5Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-4)
Mathematics -
MP.2Reason abstractly and quantitatively. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
MP.4Model with mathematics. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
HSN.Q.A.1Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
HSN.Q.A.2Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
HSN.Q.A.3Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6)

HS-ESS2 Earth's Systems

Students who demonstrate understanding can:

HS-ESS2-1. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth’s surface.]
HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth's surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]
HS-ESS2-3. Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection. [Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.]
HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]
HS-ESS2-5. Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]
HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]
HS-ESS2-7. Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

Planning and Carrying Out Investigations

Planning and carrying out investigations in 9-12 builds on K-8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

Analyzing and Interpreting Data

Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based on empirical evidence. (HS-ESS2-3)
  • Science disciplines share common rules of evidence used to evaluate explanations about natural systems. (HS-ESS2-3)
  • Science includes the process of coordinating patterns of evidence with current theory. (HS-ESS2-3)
  • Science arguments are strengthened by multiple lines of evidence supporting a single explanation. (HS-ESS2-4)

Disciplinary Core Ideas

ESS1.B: Earth and the Solar System

  • Cyclical changes in the shape of Earth’s orbit around the sun, together with changes in the tilt of the planet’s axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary to HS-ESS2-4)

ESS2.A: Earth Materials and Systems

ESS2.B: Plate Tectonics and Large-Scale System Interactions

ESS2.C: The Roles of Water in Earth's Surface Processes

ESS2.D: Weather and Climate

ESS2.E Biogeology

PS4.A: Wave Properties

Crosscutting Concepts

Cause and Effect

Energy and Matter

Structure and Function

Stability and Change

   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

        Connections to Engineering,Technology,

                     and Applications of Science

 

Interdependence of Science, Engineering, and Technology

Influence of Engineering, Technology, and Science on Society and the Natural World

Connections to other DCIs in this grade-band:

HS.PS1.A (HS-ESS2-5),(HS-ESS2-6); HS.PS1.B (HS-ESS2-5),(HS-ESS2-6); HS.PS2.B (HS-ESS2-1),(HS-ESS2-3); HS.PS3.A (HS-ESS2-4); HS.PS3.B (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-5); HS.PS3.D (HS-ESS2-3),(HS-ESS2-6); HS.PS4.B (HS-ESS2-2); HS.LS1.C (HS-ESS2-6); HS.LS2.A (HS-ESS2-7); HS.LS2.B (HS-ESS2-2),(HS-ESS2-6); HS.LS2.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-7); HS.LS4.A (HS-ESS2-7); HS.LS4.B (HS-ESS2-7); HS.LS4.C (HS-ESS2-7); HS.LS4.D (HS-ESS2-2),(HS-ESS2-7); HS.ESS1.C (HS-ESS2-4); HS.ESS3.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6); HS.ESS3.D (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6)

Articulation of DCIs across grade-bands:

MS.PS1.A (HS-ESS2-3),(HS-ESS2-5),(HS-ESS2-6); MS.PS1.B (HS-ESS2-3); MS.PS2.B (HS-ESS2-1),(HS-ESS2-3); MS.PS3.A (HS-ESS2-3),(HS-ESS2-4); MS.PS3.B (HS-ESS2-3),(HS-ESS2-4); MS.PS3.D (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6); MS.PS4.B (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6); MS.LS1.C (HS-ESS2-4); MS.LS2.A (HS-ESS2-7); MS.LS2.B (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6); MS.LS2.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-7); MS.LS4.A (HS-ESS2-7); MS.LS4.B (HS-ESS2-7); MS.LS4.C (HS-ESS2-2),(HS-ESS2-7); MS.ESS1.C (HS-ESS2-1),(HS-ESS2-7); MS.ESS2.A (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6),(HS-ESS2-7); MS.ESS2.B (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6); MS.ESS2.C (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6),(HS-ESS2-7); MS.ESS2.D (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-5); MS.ESS3.C (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6),(HS-ESS2-7); MS.ESS3.D (HS-ESS2-2),(HS-ESS2-4),(HS-ESS2-6)

Common Core State Standards Connections:

ELA/Literacy -
RST.11-12.1Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS2-2),(HS-ESS2-3)
RST.11-12.2Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. (HS-ESS2-2)
WHST.9-12.1Write arguments focused on discipline-specific content. (HS-ESS2-7)
WHST.9-12.7Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-ESS2-5)
SL.11-12.5Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-4)
Mathematics -
MP.2Reason abstractly and quantitatively. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
MP.4Model with mathematics. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
HSN.Q.A.1Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
HSN.Q.A.2Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS2-1),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-6)
HSN.Q.A.3Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS2-1),(HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-4),(HS-ESS2-5),(HS-ESS2-6)

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.