MS-PS3   Energy

Students who demonstrate understanding can:

MS-PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.]
MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]
MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]
MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. [Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]
MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed worlds.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

           Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based upon logical and conceptual connections between evidence and explanations (MS-PS3-4),(MS-PS3-5)

Disciplinary Core Ideas

PS3.A: Definitions of Energy

PS3.B: Conservation of Energy and Energy Transfer

PS3.C: Relationship Between Energy and Forces

ETS1.A: Defining and Delimiting an Engineering Problem

ETS1.B: Developing Possible Solutions

Crosscutting Concepts

Scale, Proportion, and Quantity

  • Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. (MS-PS3-1),(MS-PS3-4)

Systems and System Models

  • Models can be used to represent systems and their interactions – such as inputs, processes, and outputs – and energy and matter flows within systems. (MS-PS3-2)

Energy and Matter

Connections to other DCIs in this grade-band:

MS.PS1.A (MS-PS3-4); MS.PS1.B (MS-PS3-3); MS.PS2.A (MS-PS3-1),(MS-PS3-4),(MS-PS3-5); MS.ESS2.A (MS-PS3-3); MS.ESS2.C (MS-PS3-3),(MS-PS3-4); MS.ESS2.D (MS-PS3-3),(MS-PS3-4); MS.ESS3.D (MS-PS3-4)

Articulation of DCIs across grade-bands:

4.PS3.B (MS-PS3-1),(MS-PS3-3); 4.PS3.C (MS-PS3-4),(MS-PS3-5); HS.PS1.B (MS-PS3-4); HS.PS2.B (MS-PS3-2); HS.PS3.A (MS-PS3-1),(MS-PS3-4),(MS-PS3-5); HS.PS3.B (MS-PS3-1),(MS-PS3-2),(MS-PS3-3),(MS-PS3-4),(MS-PS3-5); HS.PS3.C (MS-PS3-2)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS3-1),(MS-PS3-5)
RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS3-3),(MS-PS3-4)
RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS3-1)
WHST.6-8.1 Write arguments focused on discipline content. (MS-PS3-5)
WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS3-3),(MS-PS3-4)
SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-PS3-2)
Mathematics -
MP.2 Reason abstractly and quantitatively. (MS-PS3-1),(MS-PS3-4),(MS-PS3-5)
6.RP.A.1 Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities. (MS-PS3-1),(MS-PS3-5)
6.RP.A.2 Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. (MS-PS3-1)
7.RP.A.2 Recognize and represent proportional relationships between quantities. (MS-PS3-1),(MS-PS3-5)
8.EE.A.1Know and apply the properties of integer exponents to generate equivalent numerical expressions. (MS-PS3-1)
8.EE.A.2Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational. (MS-PS3-1)
8.F.A.3Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (MS-PS3-1),(MS-PS3-5)
6.SP.B.5Summarize numerical data sets in relation to their context. (MS-PS3-4)

MS-PS3   Energy

Students who demonstrate understanding can:

MS-PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.]
MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]
MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]
MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. [Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]
MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed worlds.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

           Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based upon logical and conceptual connections between evidence and explanations (MS-PS3-4),(MS-PS3-5)

Disciplinary Core Ideas

PS3.A: Definitions of Energy

PS3.B: Conservation of Energy and Energy Transfer

PS3.C: Relationship Between Energy and Forces

ETS1.A: Defining and Delimiting an Engineering Problem

ETS1.B: Developing Possible Solutions

Crosscutting Concepts

Scale, Proportion, and Quantity

  • Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. (MS-PS3-1),(MS-PS3-4)

Systems and System Models

  • Models can be used to represent systems and their interactions – such as inputs, processes, and outputs – and energy and matter flows within systems. (MS-PS3-2)

Energy and Matter

Connections to other DCIs in this grade-band:

MS.PS1.A (MS-PS3-4); MS.PS1.B (MS-PS3-3); MS.PS2.A (MS-PS3-1),(MS-PS3-4),(MS-PS3-5); MS.ESS2.A (MS-PS3-3); MS.ESS2.C (MS-PS3-3),(MS-PS3-4); MS.ESS2.D (MS-PS3-3),(MS-PS3-4); MS.ESS3.D (MS-PS3-4)

Articulation of DCIs across grade-bands:

4.PS3.B (MS-PS3-1),(MS-PS3-3); 4.PS3.C (MS-PS3-4),(MS-PS3-5); HS.PS1.B (MS-PS3-4); HS.PS2.B (MS-PS3-2); HS.PS3.A (MS-PS3-1),(MS-PS3-4),(MS-PS3-5); HS.PS3.B (MS-PS3-1),(MS-PS3-2),(MS-PS3-3),(MS-PS3-4),(MS-PS3-5); HS.PS3.C (MS-PS3-2)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS3-1),(MS-PS3-5)
RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS3-3),(MS-PS3-4)
RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS3-1)
WHST.6-8.1 Write arguments focused on discipline content. (MS-PS3-5)
WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS3-3),(MS-PS3-4)
SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-PS3-2)
Mathematics -
MP.2 Reason abstractly and quantitatively. (MS-PS3-1),(MS-PS3-4),(MS-PS3-5)
6.RP.A.1 Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities. (MS-PS3-1),(MS-PS3-5)
6.RP.A.2 Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. (MS-PS3-1)
7.RP.A.2 Recognize and represent proportional relationships between quantities. (MS-PS3-1),(MS-PS3-5)
8.EE.A.1Know and apply the properties of integer exponents to generate equivalent numerical expressions. (MS-PS3-1)
8.EE.A.2Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational. (MS-PS3-1)
8.F.A.3Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (MS-PS3-1),(MS-PS3-5)
6.SP.B.5Summarize numerical data sets in relation to their context. (MS-PS3-4)

MS-PS3   Energy

Students who demonstrate understanding can:

MS-PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.]
MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]
MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]
MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. [Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]
MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed worlds.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

           Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based upon logical and conceptual connections between evidence and explanations (MS-PS3-4),(MS-PS3-5)

Disciplinary Core Ideas

PS3.A: Definitions of Energy

PS3.B: Conservation of Energy and Energy Transfer

PS3.C: Relationship Between Energy and Forces

ETS1.A: Defining and Delimiting an Engineering Problem

ETS1.B: Developing Possible Solutions

Crosscutting Concepts

Scale, Proportion, and Quantity

  • Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. (MS-PS3-1),(MS-PS3-4)

Systems and System Models

  • Models can be used to represent systems and their interactions – such as inputs, processes, and outputs – and energy and matter flows within systems. (MS-PS3-2)

Energy and Matter

Connections to other DCIs in this grade-band:

MS.PS1.A (MS-PS3-4); MS.PS1.B (MS-PS3-3); MS.PS2.A (MS-PS3-1),(MS-PS3-4),(MS-PS3-5); MS.ESS2.A (MS-PS3-3); MS.ESS2.C (MS-PS3-3),(MS-PS3-4); MS.ESS2.D (MS-PS3-3),(MS-PS3-4); MS.ESS3.D (MS-PS3-4)

Articulation of DCIs across grade-bands:

4.PS3.B (MS-PS3-1),(MS-PS3-3); 4.PS3.C (MS-PS3-4),(MS-PS3-5); HS.PS1.B (MS-PS3-4); HS.PS2.B (MS-PS3-2); HS.PS3.A (MS-PS3-1),(MS-PS3-4),(MS-PS3-5); HS.PS3.B (MS-PS3-1),(MS-PS3-2),(MS-PS3-3),(MS-PS3-4),(MS-PS3-5); HS.PS3.C (MS-PS3-2)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS3-1),(MS-PS3-5)
RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS3-3),(MS-PS3-4)
RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS3-1)
WHST.6-8.1 Write arguments focused on discipline content. (MS-PS3-5)
WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS3-3),(MS-PS3-4)
SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-PS3-2)
Mathematics -
MP.2 Reason abstractly and quantitatively. (MS-PS3-1),(MS-PS3-4),(MS-PS3-5)
6.RP.A.1 Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities. (MS-PS3-1),(MS-PS3-5)
6.RP.A.2 Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. (MS-PS3-1)
7.RP.A.2 Recognize and represent proportional relationships between quantities. (MS-PS3-1),(MS-PS3-5)
8.EE.A.1Know and apply the properties of integer exponents to generate equivalent numerical expressions. (MS-PS3-1)
8.EE.A.2Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational. (MS-PS3-1)
8.F.A.3Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (MS-PS3-1),(MS-PS3-5)
6.SP.B.5Summarize numerical data sets in relation to their context. (MS-PS3-4)

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.