4. Earth’s Systems: Processes that Shape the Earth

Students who demonstrate understanding can:

4-ESS1-1. Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. [Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time; and, a canyon with different rock layers in the walls and a river in the bottom, indicating that over time a river cut through the rock.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation and the age of rocks. Forms of evidence are limited to observable phenomena and evidence from rock layers and fossils. Interpretation of rock and fossil evidence is limited to relative time.]

4-ESS1-2. Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]

4-ESS2-2. Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]

4-ESS3-2. Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.* [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems require building on K-2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

- Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. (4-ESS2-1)

Analyzing and Interpreting Data
Analyzing data in 3-5 builds on K-2 experiences and progresses to introduce more sophisticated approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

- Analyze and interpret data to make sense of phenomena using logical reasoning. (4-ESS2-2)

Conducting Explanations and Designing Solutions
Conducting explanations and designing solutions in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Identify the evidence that supports particular points in an explanation. (4-ESS1-1)

- Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-ESS3-2)

Disciplinary Core Ideas

Essentials C1: The History of Planet Earth

- Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed. (4-ESS1-1)

Essentials A: Earth Materials and Systems

- Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. (4-ESS1-2)

Essentials B: Plate Tectonics and Large-Scale System Interactions

- The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth. (4-ESS2-2)

Essentials E: Biogeology

- Living things affect the physical characteristics of their regions. (4-ESS2-1)

Essentials F: Natural Hazards

- A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (4-ESS3-2) [Note: This Disciplinary Core Idea can also be found in 3.WC.]

Essentials B: Designing Solutions to Engineering Problems

- Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS2-2)

Crosscutting Concepts

Patterns
- Patterns can be used as evidence to support an explanation. (4-ESS1-2, 4-ESS2-2)

Cause and Effect
- Cause and effect relationships are routinely identified, tested, and used to explain change. (4-ESS2-1, 4-ESS2-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World
- Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands. (4-ESS3-2)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes consistent patterns in natural systems. (4-ESS1-1)

Assessment

- Articulation of DCIs across grades:
 - 4.ESS1.C (4-ESS3-2)
 - 4.ESS2.C (4-ESS3-2)
 - 4.ESS3.C (4-ESS3-2)

- Common Core State Standards Connections:
 - ELA/Literacy – RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-ESS3-2)
 - RI.4.7 Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. (4-ESS2-2)
 - RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-ESS2-2)
 - W.4.6 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-ESS1-1, 4-ESS2-1)
 - W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-ESS1-1, 4-ESS2-1)
 - W.4.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-ESS1-1)

- Mathematics –
 - MP.2 Reason abstractly and quantitatively. (4-ESS1-1, 4-ESS2-1, 4-ESS3-2)
 - MP.4 Model with mathematics. (4-ESS1-1, 4-ESS2-1, 4-ESS3-2)
 - MP.5 Use appropriate tools strategically. (4-ESS2-1)

- 4.MD.A.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. (4-ESS1-1, 4-ESS2-1)

- 4.OA.A.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. (4-ESS3-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences. May 2013 ©2013 Achieve, Inc. All rights reserved.