Waves and Their Applications in Technologies for Information Transfer

MS-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Clarification Statement: Emphasis is on both light and mechanical waves. Examples of models could include drawings, simulations and written descriptions.

Assessment Boundary: Assessment is limited to qualitative application pertaining to light and mechanical waves.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>PS4.A: Wave Properties
• A sound wave needs a medium through which it is transmitted.</td>
<td>Structure and Function
• Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used.</td>
</tr>
<tr>
<td></td>
<td>PS4.B: Electromagnetic Radiation
• When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object’s material and the frequency (color) of the light.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends. • A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. However, because light can travel through space, it cannot be a matter wave, like sound or water waves.</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band:

MS.LS1.D (MS-PS4-2)

Articulation of DCIs across grade-bands:

4.PS3.A (MS-PS4-1); **4.PS3.B** (MS-PS4-1); **4.PS4.A** (MS-PS4-1); **4.PS4.B** (MS-PS4-2); **4.PS4.C** (MS-PS4-3); **HS.PS4.A** (MS-PS4-1),(MS-PS4-2),(MS-PS4-3); **HS.PS4.B**(MS-PS4-1),(MS-PS4-2); **HS.PS4.C** (MS-PS4-3); **HS.ESS1.A** (MS-PS4-2); **HS.ESS2.A** (MS-PS4-2); **HS.ESS2.C** (MS-PS4-2); **HS.ESS2.D** (MS-PS4-2)

Common Core State Standards Connections:

ELA/Literacy -

RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. (MS-PS4-3)

RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-PS4-3)

RST.6-8.9 Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-PS4-3)

WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-PS4-3)

SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-PS4-1),(MS-PS4-2)

Mathematics -

MP.2 Reason abstractly and quantitatively. (MS-PS4-1)

MP.4 Model with mathematics. (MS-PS4-1)

6.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-PS4-1)

6.RP.A.3 Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS4-1)

7.RP.A.2 Recognize and represent proportional relationships between quantities. (MS-PS4-1)

8.F.A.3 Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (MS-PS4-1)
Crosscutting Concept Elements for System and System Models

Grades 6-8
- Systems may interact with other systems; they may have subsystems and be a part of larger complex systems
- Models can be used to represent systems and their interactions—such as inputs, processes, and outputs—and energy, matter, and information flows within systems.
- Models are limited in that they only represent certain aspects of the system under study.

Grades 9-12
- When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.
- Models can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.

High School Disciplinary Core Ideas connected to MS-PS4-2 Waves and Their Applications in Technologies for Information Transfer

PS4.B: Electromagnetic Radiation
- Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. (HS-PS4-3)
- When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy (heat). Shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells. (HS-PS4-4)
- Photoelectric materials emit electrons when they absorb light of a high-enough frequency. (HS-PS4-5)

PS4.C: Information Technologies and Instrumentation
- Multiple technologies based on the understanding of waves and their interactions with matter are part of every day experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them. (HS-PS4-5)

PS4.A: Wave Properties
- The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1)
- Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. (HS-PS4-2),(HSPS4-5)
- [From the 3–5 grade band endpoints] Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) (HS-PS4-3)

Connection to other Disciplinary Core Ideas in Middle School Grade-band

LS1.D: Information Processing
- Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories.