Elementary Standards

Students in kindergarten through fifth grade begin to develop an understanding of the four disciplinary core ideas: physical sciences; life sciences; earth and space sciences; and engineering, technology, and applications of science. In the earlier grades, students begin by recognizing patterns and formulating answers to questions about the world around them. By the end of fifth grade, students are able to demonstrate grade-appropriate proficiency in gathering, describing, and using information about the natural and designed world(s). The performance expectations in elementary school grade bands develop ideas and skills that will allow students to explain more complex phenomena in the four disciplines as they progress to middle school and high school. While the performance expectations shown in kindergarten through fifth grade couple particular practices with specific disciplinary core ideas, instructional decisions should include use of many practices that lead to the performance expectations.
Kindergarten

The performance expectations in kindergarten help students formulate answers to questions such as: “What happens if you push or pull an object harder? Where do animals live and why do they live there? What is the weather like today and how is it different from yesterday?”

Kindergarten performance expectations include PS2, PS3, LS1, ESS2, ESS3, and ETS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop understanding of patterns and variations in local weather and the purpose of weather forecasting to prepare for, and respond to, severe weather. Students are able to apply an understanding of the effects of different strengths or different directions of pushes and pulls on the motion of an object to analyze a design solution. Students are also expected to develop understanding of what plants and animals (including humans) need to survive and the relationship between their needs and where they live. The crosscutting concepts of patterns; cause and effect; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the kindergarten performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions, developing and using models, planning and carrying out investigations, analyzing and interpreting data, designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
K. Forces and Interactions: Pushes and Pulls

Students who demonstrate understanding can:

K-PS2-1. Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. [Clarification Statement: Examples of pushes or pulls could include a string attached to an object being pulled, a person pushing an object, a person stopping a rolling ball, and two objects colliding and pushing on each other.] [Assessment Boundary: Assessment is limited to different relative strengths or different directions, but not both at the same time. Assessment does not include non-contact pushes or pulls such as those produced by magnets.]

K-PS2-2. Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.* [Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices
Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K-2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
- With guidance, plan and conduct an investigation in collaboration with peers. (K-PS2-1)

Analyzing and Interpreting Data
Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
- Analyze data from tests of an object or tool to determine if it works as intended. (K-PS2-2)

Scientific Investigations Use a Variety of Methods
- Scientists use different ways to study the world. (K-PS2-1)

Disciplinary Core Ideas
PS2.A: Forces and Motion
- Pushes and pulls can have different strengths and directions. (K-PS2-1), (K-PS2-2)
- Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. (K-PS2-1), (K-PS2-2)

PS2.B: Types of Interactions
- When objects touch or collide, they push on one another and can change motion. (K-PS2-1)

PS3.C: Relationship Between Energy and Forces
- A bigger push or pull makes things speed up or slow down more quickly. (secondary to K-PS2-1)

ETS1.A: Defining Engineering Problems
- A situation that people want to change or create can be approached as a problem to be solved through engineering. Such problems may have many acceptable solutions. (secondary to K-PS2-2)

Crosscutting Concepts
Cause and Effect
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (K-PS2-1), (K-PS2-2)

Connections to Nature of Science
- Contact pushes or pulls such as those produced by magnets.

Articulation of DCIs across grade-levels: 2.E.TS1.B (K-PS2-2); 3.PS2.A (K-PS2-1), (K-PS2-2); 3.PS2.B (K-PS2-1); 4.PS3.A (K-PS2-1); 4.E.TS1.A (K-PS2-2)

Common Core State Standards Connections:
- ELA/Literacy
 - RI.K.1 With prompting and support, ask and answer questions about key details in a text. (K-PS2-2)
 - W.K.7 Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K-PS2-1)
 - SL.K.3 Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (K-PS2-2)
- Mathematics
 - MP.2 Reason abstractly and quantitatively. (K-PS2-1)
 - K.MD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. (K-PS2-1)
 - K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. (K-PS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.
K. Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment

Students who demonstrate understanding can:

K-LS1.1. Use observations to describe patterns of what plants and animals (including humans) need to survive. [Clarification Statement: Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different types of animals; the requirement of plants to have light; and that all living things need water.]

K-ESS2.2. Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs. [Clarification Statement: Examples of plants and animals changing their environment could include a squirrel digs in the ground to hide its food and tree roots can break concrete.]

K-ESS3.1. Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live. [Clarification Statement: Examples of relationships could include that deer eat buds and leaves, therefore, they usually live in forested areas, and grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system.]

K-ESS3.3. Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* [Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.]

The performance expectations above were developed using the following core ideas from the National Research Council's A Framework for K-12 Science Education:

Disciplinary Core Ideas

- **LS1.C: Organization for Matter and Energy Flow in Organisms**
 - All animals need food in order to live and grow. They obtain their food from plants or from other animals. Plants need water and light to live and grow. (K-LS1-1)
 - **ESS2.E: Biogeochemistry**
 - Plants and animals can change their environment. (K-ESS2-2)
 - **ESS3.A: Natural Resources**
 - Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do. (K-ESS3-1)
 - **ESS3.C: Human Impacts on Earth Systems**
 - Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. (secondary to K-ESS2-2; K-ESS3-3)

Crosscutting Concepts

- **Patterns**
 - Patterns in the natural and human designed world can be observed and used as evidence. (K-LS1-1)
 - **Cause and Effect**
 - Events have causes that generate observable patterns. (K-ESS3-3)
 - **Systems and System Models**
 - Systems in the natural and designed world have parts that work together. (K-ESS2-2; K-ESS3-1)

Common Core State Standards Connections: ELA/Literacy –

- **RI.K.1** With prompting and support, ask and answer questions about key details in a text. (K-ESS2-2)
- **W.K.1** Use a combination of drawing, dictating, and writing to compose opinion pieces in which they tell a reader the topic or the name of the book they are writing about and state an opinion or preference about the topic or book. (K-ESS2-2)
- **W.K.2** Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic. (K-ESS2-2; K-ESS3-3)
- **W.K.7** Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K-LS1-1)
- **SL.K.3** Add drawings or other visual displays to descriptions as desired to provide additional detail. (K-ESS3-1)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (K-ESS3-1)
- **MP.4** Model with mathematics. (K-ESS3-1)

K.CC

- **Counting and Cardinality (K-ESS3-1)**

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.
K. Weather and Climate

Students who demonstrate understanding can:

K-PS3.1. Make observations to determine the effect of sunlight on Earth’s surface. [Clarification Statement: Examples of Earth’s surface could include sand, soil, rocks, and water] [Assessment Boundary: Assessment of temperature is limited to relative measures such as warmer/cooler.]

K-PS3.2. Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.* [Clarification Statement: Examples of structures could include umbrellas, canopies, and tents that minimize the warming effect of the sun.]

K-ESS2.1. Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]

K-ESS3.2. Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.* [Clarification Statement: Emphasis is on local forms of severe weather.]

The performance expectations above were developed using the following elements from the NRC document, *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining Problems
- Asking questions and defining problems in grades K–2 builds on prior experiences and progresses to simple descriptive questions that can be tested.
- Ask questions based on observations to find more information about the designed world. (K-ESS3-2)

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
- Make observations (firsthand or from media) to collect data that can be used to make comparisons. (K-PS3-1)

Analyzing and Interpreting Data
- Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
- Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K-ESS2-1)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
- Use tools and materials provided to design and build a device that solves a specific problem or a solution to a specific problem. (K-PS3-2)

Obtaining, Evaluating, and Communicating Information
- Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.
- Read grade-appropriate texts and/or use media to obtain scientific information to describe patterns in the natural world. (K-ESS2-2)

Disciplinary Core Ideas

PS3.B: Conservation of Energy and Energy Transfer
- Sunlight warms Earth’s surface. (K-PS3-1), (K-PS3-2)

ESS2.D: Weather and Climate
- Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time. (K-ESS2-1)

ESS3.B: Natural Hazards
- Some kinds of severe weather are more likely than others in a given region. Weather scientists forecast severe weather so that the communities can prepare for and respond to these events. (K-ESS3-2)

ETS1.A: Defining and Delimiting an Engineering Problem
- Asking questions, making observations, and gathering information are helpful in thinking about problems. (secondary to K-ESS3-2)

Crosscutting Concepts

Patterns
- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (K-ESS2-1)

Cause and Effect
- Events have causes that generate observable patterns. (K-PS3-1), (K-PS3-2), (K-ESS2-2)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology
- People encounter questions about the natural world every day. (K-ESS3-2)

Influence of Engineering, Technology, and Science on Society and the Natural World
- People depend on various technologies in their lives; human life would be very different without technology. (K-ESS3-2)

Connections to Nature of Science

Scientific Investigations Use a Variety of Methods
- Scientists use different ways to study the world. (K-PS3-1)

Science Knowledge is Based on Empirical Evidence
- Scientists look for patterns and order when making observations about the world. (K-ESS2-1)

Connections to other DCIs in kindergarten: K.ETS1.A (K-PS3-2), K.ESS2.B (K-PS3-2)

Articulation of DCIs across grade-levels:
1. K.S4.B (K-PS3-1), (K-PS3-2); 2. ESS1.LC (K-ESS2-3); 2. ESS2.A (K-ESS2-1); 2. ETS1.B (K-PS3-2); 3. ESS2.D (K-PS3-1), (K-ESS2-1); 3. ESS3.B (K-ESS2-1); 4. ESS3.A (K-ESS2-1); 4. ESS3.B (K-ESS2-3); 4. ESS3.B (K-ESS2-1); 4. ETS1.A (K-PS3-2)

Common Core State Standards Connections: ELA/Literacy – R.I.1.1
- With prompting and support, ask and answer questions about key details in a text. (K-ESS3-2)

W.K.7
- Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K-PS3-1), (K-PS3-2), (K-ESS2-1)

SL.K.3
- Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (K-ESS3-2)

Mathematics –
1. **MP.2**
 - Reason abstractly and quantitatively. (K-ESS2-1)
2. **MP.4**
 - Model with mathematics. (K-ESS2-1), (K-ESS2-3)
3. **K.CC**
 - Counting and Cardinality (K-ESS2-2)
4. **K.C.C.A**
 - Know number names and the count sequence. (K-ESS2-1)
5. **K.M.D.A.1**
 - Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. (K-ESS2-1)
6. **K.M.D.A.2**
 - Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. (K-PS3-1), (K-PS3-2)
7. **K.M.D.B.3**
 - Classify objects into given categories; count the number of objects in each category and sort the categories by count. (K-ESS2-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

September 2017 ©2013 Achieve, Inc. All rights reserved.
First Grade

The performance expectations in first grade help students formulate answers to questions such as: “What happens when materials vibrate? What happens when there is no light? What are some ways plants and animals meet their needs so that they can survive and grow? How are parents and their children similar and different? What objects are in the sky and how do they seem to move?” First grade performance expectations include PS4, LS1, LS3, and ESS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop understanding of the relationship between sound and vibrating materials as well as between the availability of light and ability to see objects. The idea that light travels from place to place can be understood by students at this level through determining the effect of placing objects made with different materials in the path of a beam of light. Students are also expected to develop understanding of how plants and animals use their external parts to help them survive, grow, and meet their needs as well as how behaviors of parents and offspring help the offspring survive. The understanding is developed that young plants and animals are like, but not exactly the same as, their parents. Students are able to observe, describe, and predict some patterns of the movement of objects in the sky. The crosscutting concepts of patterns; cause and effect; structure and function; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the first grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
1. Waves: Light and Sound

Students who demonstrate understanding can:

1-PS4-1. Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate. [Clarification Statement: Examples of vibrating materials that make sound could include tuning forks and plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound and holding an object near a vibrating tuning fork.]

1-PS4-2. Make observations to construct an evidence-based account that objects can be seen only when illuminated. [Clarification Statement: Examples of observations could include those made in a completely dark room, a pinhole box, and a video of a cave explorer with a flashlight. Illumination could be from an external light source or by an object giving off its own light.]

1-PS4-3. Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light. [Clarification Statement: Examples of materials could include those that are transparent (such as clear plastic), translucent (such as wax paper), opaque (such as cardboard), and reflective (such as a mirror).] [Assessment Boundary: Assessment does not include the speed of light.]

1-PS4-4. Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.* [Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string "telephones," and a pattern of drum beats.] [Assessment Boundary: Assessment does not include technological details for how communication devices work.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

• Plan and conduct investigations collaboratively to produce data to serve as the basis for evidence to answer a question. (1-PS4-1), (1-PS4-3)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

• Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena (1-PS4-2)

• Use tools and materials provided to design a device that solves a specific problem. (1-PS4-4)

Disciplinary Core Ideas

PS4.A: Wave Properties
• Sound can make matter vibrate, and vibrating matter can make sound. (1-PS4-1)

PS4.B: Electromagnetic Radiation
• Objects can be seen if light is available to illuminate them or if they give off their own light. (1-PS4-2)

• Some materials allow light to pass through them, others allow only some light through and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach. Mirrors can be used to redirect a light beam. (Boundary: The idea that light travels from place to place is developed through experiences with light sources, mirrors, and shadows, but no attempt is made to discuss the speed of light.) (1-PS4-3)

PS4.C: Information Technologies and Instrumentation
• People also use a variety of devices to communicate (send and receive information) over long distances. (1-PS4-4)

Crosscutting Concepts

Cause and Effect
• Simple tests can be designed to gather evidence to support or refute student ideas about causes. (1-PS4-1), (1-PS4-2), (1-PS4-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science, on Society and the Natural World
• People depend on various technologies in their lives; human life would be very different without technology. (1-PS4-4)

Common Core State Standards Connections:

ELA/Literacy –

W.1.2 Write informative/explanatory texts in which they name a topic, supply some facts about the topic, and provide some sense of closure. (1-PS4-2)

W.1.7 Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use them to write a sequence of instructions). (1-PS4-1), (1-PS4-2), (1-PS4-3), (1-PS4-4)

W.1.8 With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-PS4-1), (1-PS4-2), (1-PS4-3)

SL.1.1 Participate in collaborative conversations with diverse partners about grade 1 topics and texts with peers and adults in small and larger groups. (1-PS4-1), (1-PS4-2), (1-PS4-3)

Mathematics –

MP.5 Use appropriate tools strategically. (1-PS4-4)

1.MD.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object. (1-PS4-4)

1.MD.2 Express the length of an object as a whole number of length units, by layering multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. (1-PS4-4)

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

September 2017 ©2013 Achieve, Inc. All rights reserved.
1. Structure, Function, and Information Processing

Students who demonstrate understanding can:

1-LS1.1 Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs. [Clarification Statement: Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells, and animal scales; stabilizing structures by mimicking animal tails and roots on plants; keeping out intruders by mimicking thorns on branches and animal quills; and, detecting intruders by mimicking eyes and ears.]

1-LS1.2 Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive. [Clarification Statement: Examples of patterns of behaviors could include the signals that offspring make (such as crying, cheeping, and other vocalizations) and the responses of the parents (such as feeding, comforting, and protecting the offspring).]

1-LS3.1 Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. [Clarification Statement: Examples of patterns could include features plants or animals share. Examples of observations could include leaves from the same kind of plant are the same shape but can differ in size; and, a particular breed of dog looks like its parents but is not exactly the same.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

- Constructs explanations and designs solutions in K-2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
 - Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (1-LS3-1)
 - Use materials to design a device that solves a specific problem or a solution to a specific problem. (1-LS1-1)

Obtaining, Evaluating, and Communicating Information

- Obtaining, evaluating, and communicating information in K-2 builds on prior experiences and uses observations and texts to communicate new information.
 - Read grade-appropriate texts and use media to obtain scientific information to determine patterns in the natural world. (1-LS1-2)

Disciplinary Core Ideas

LS1.A: Structure and Function

- All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (1-LS1-1)

LS1.B: Growth and Development of Organisms

- Adult plants and animals can have young. In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive. (1-LS1-2)

LS1.D: Information Processing

- Animals have body parts that capture and convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs. (1-LS1-1)

LS3.A: Inheritance of Traits

- Young animals are much, but not exactly, like their parents. Plants also are very much, but not exactly, like their parents. (1-LS3-1)

LS3.B: Variation of Traits

- Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways. (1-LS3-1)

Crosscutting Concepts

Patterns

- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-LS1-2),(1-LS3-1)

Structure and Function

- The shape and stability of structures of natural and designed objects are related to their function(s). (1-LS1-1)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

- Every human-made product is designed by applying some knowledge of the natural world and is built by using materials derived from the natural world. (1-LS1-1)

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Obtaining, Evaluating, and Communicating Information

Disciplinary Core Ideas

LS1.A: Structure and Function

LS1.B: Growth and Development of Organisms

LS1.D: Information Processing

LS3.A: Inheritance of Traits

LS3.B: Variation of Traits

Crosscutting Concepts

Patterns

Structure and Function

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

September 2017 ©2013 Achieve, Inc. All rights reserved. 8 of 14
1.Space Systems: Patterns and Cycles

Students who demonstrate understanding can:

1-ESS1-1. Use observations of the sun, moon, and stars to describe patterns that can be predicted. [Clarification Statement: Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars other than our sun are visible at night but not during the day.] [Assessment Boundary: Assessment of star patterns is limited to stars being seen at night and not during the day.]

1-ESS1-2. Make observations at different times of year to relate the amount of daylight to the time of year. [Clarification Statement: Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring or fall.] [Assessment Boundary: Assessment is limited to relative amounts of daylight, not quantifying the hours or time of daylight.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>ESS1.A: The Universe and its Stars</td>
<td>Patterns</td>
</tr>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in K-2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.</td>
<td>- Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted. (1-ESS1-1)</td>
<td>- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-ESS1-1),(1-ESS1-2)</td>
</tr>
<tr>
<td>Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.</td>
<td>- Seasonal patterns of sunrise and sunset can be observed, described, and predicted. (1-ESS1-2)</td>
<td>Scientific Knowledge Assumes an Order and Consistency in Natural Systems</td>
</tr>
<tr>
<td>Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (1-ESS1-1)</td>
<td>- Science assumes natural events happen today as they happened in the past. (1-ESS1-1)</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in first grade: NA

Articulation of DCIs across grade-levels: 3.PS2.A (1-ESS1-1); 5.PS2.B (1-ESS1-1),(1-ESS1-2) 5-ESS1.B (1-ESS1-1),(1-ESS1-2)

Common Core State Standards Connections:

ELA/Literacy –

W.1.7 Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use them to write a sequence of instructions). (1-ESS1-1),(1-ESS1-2)

W.1.8 With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-ESS1-1),(1-ESS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (1-ESS1-2)

MP.4 Model with mathematics. (1-ESS1-2)

MP.5 Use appropriate tools strategically. (1-ESS1-2)

1.OA.A.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations to represent the problem. (1-ESS1-2)

1.MD.C.4 Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. (1-ESS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.
Second Grade

The performance expectations in second grade help students formulate answers to questions such as: “How does land change and what are some things that cause it to change? What are the different kinds of land and bodies of water? How are materials similar and different from one another, and how do the properties of the materials relate to their use? What do plants need to grow? How many types of living things live in a place?” Second grade performance expectations include PS1, LS2, LS4, ESS1, ESS2, and ETS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop an understanding of what plants need to grow and how plants depend on animals for seed dispersal and pollination. Students are also expected to compare the diversity of life in different habitats. An understanding of observable properties of materials is developed by students at this level through analysis and classification of different materials. Students are able to apply their understanding of the idea that wind and water can change the shape of the land to compare design solutions to slow or prevent such change. Students are able to use information and models to identify and represent the shapes and kinds of land and bodies of water in an area and where water is found on Earth. The crosscutting concepts of patterns; cause and effect; energy and matter; structure and function; stability and change; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the second grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
2. Structure and Properties of Matter

Students who demonstrate understanding can:

2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.
Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.

2-PS1-2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.*
Clarification Statement: Examples of properties could include, strength, flexibility, hardness, texture, and absorptivity. Assessment Boundary: Assessment of quantitative measurements is limited to length.

2-PS1-3. Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.
Clarification Statement: Examples of pieces could include blocks, building bricks, or other assorted small objects.

2-PS1-4. Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.
Clarification Statement: Examples of reversible changes could include materials such as water and butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and heating paper.

Disciplinary Core Ideas

PS1A: Structure and Properties of Matter
- Different kinds of matter exist and many of them can be either solid, liquid, or gas. Matter can be classified by its observable properties. (2-PS1-1)
 - Different properties are suited to different purposes. (2-PS1-2, 2-PS1-3)
- A great variety of objects can be built up from a small set of pieces. (2-PS1-3)

PS1B: Chemical Reactions
- Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not. (2-PS1-4)

Crosscutting Concepts

Patterns
- Patterns in the natural and human designed world can be observed. (2-PS1-1)

Cause and Effect
- Events have causes that generate observable patterns. (2-PS1-4)
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (2-PS1-2)

Energy and Matter
- Objects may break into smaller pieces and be put together into larger pieces, or change shape. (2-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World
- Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world. (2-PS1-2)

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

- Scientists search for cause and effect relationships to explain natural events. (2-PS1-4)

Science, Engineering, and Practices

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
 - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

Analyzing and Interpreting Data
- Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
 - Analyze data from tests of an object or tool to determine if it works as intended. (2-PS1-2)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).
 - Construct an argument with evidence to support a claim. (2-PS1-4)

Connections to Nature of Science

Connections to other DCIs in second grade: N/A

Articulation of DCIs across grade levels: 4.ESS2.A (2-PS1-1); 5.PS1.A (2-PS1-1), (2-PS1-2), (2-PS1-3); 5.PS1.B (2-PS1-4); 5.LS2.A (2-PS1-3)

Common Core State Standards Connections:
- ELA/Literacy –
 - RI.1.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-PS1-4)
 - RI.1.3 Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-PS1-4)
 - RI.1.8 Describe how reasons support specific points the author makes in a text. (2-PS1-2), (2-PS1-4)
 - W.1.2 Write opinion pieces in which they introduce the topic or book they are writing about, state an opinion, supply reasons that support the opinion, use linking words (e.g., because, and, also) to connect opinion and reasons, and provide a concluding statement or section. (2-PS1-4)
 - W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-PS1-1), (2-PS1-2), (2-PS1-3)
 - W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1), (2-PS1-2), (2-PS1-3)
- Mathematics –
 - MP.2 Reason abstractly and quantitatively. (2-PS1-2)
 - MP.4 Model with mathematics. (2-PS1-1), (2-PS1-2)
 - MP.5 Use appropriate tools strategically. (2-PS1-2)
 - 2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1), (2-PS1-2)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

September 2017 ©2013 Achieve, Inc. All rights reserved.
2. Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

2-LS2-1. Plan and conduct an investigation to determine if plants need sunlight and water to grow.

[Assessment Boundary: Assessment is limited to testing one variable at a time.]

2-LS2-2. Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.*

2-LS4-1. Make observations of plants and animals to compare the diversity of life in different habitats.

[Clarification Statement: Emphasis is on the diversity of living things in each of a variety of different habitats.] [Assessment Boundary: Assessment does not include specific animal and plant names in specific habitats.]

Science and Engineering Practices

Developing and Using Models

Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.

- Develop a simple model based on evidence to represent a proposed object or tool. (2-LS2-2)

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-LS2-1)
- Make observations (firsthand or from media) to collect data which can be used to make comparisons. (2-LS4-1)

Disciplinary Core Ideas

LS2.A: Interdependent Relationships in Ecosystems

- Plants depend on water and light to grow. (2-LS2-1)
- Plants depend on animals for pollination or to move their seeds around. (2-LS2-2)

LS4.D: Biodiversity and Humans

- There are many different kinds of living things in any area, and they exist in different places on land and in water. (2-LS4-1)

ETS1.B: Developing Possible Solutions

- Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (secondary to 2-LS2-2)

Crosscutting Concepts

Cause and Effect

- Events have causes that generate observable patterns. (2-LS2-1)

Structure and Function

- The shape and stability of structures of natural and designed objects are related to their function(s). (2-LS2-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

September 2017

©2013 Achieve, Inc. All rights reserved.
2. Earth’s Systems: Processes that Shape the Earth

Students who demonstrate understanding can:

2-ESS1-1. Use information from several sources to provide evidence that Earth events can occur quickly or slowly.

[Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and erosion of rocks, which occur slowly.][Assessment Boundary: Assessment does not include quantitative measurements of timescales.]

2-ESS2-1. Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.*

[Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.]

2-ESS2-2. Develop a model to represent the shapes and kinds of land and bodies of water in an area. [Assessment does not include quantitative scaling in models.]

2-ESS2-3. Obtain information to identify where water is found on Earth and that bodies of water may be solid or liquid.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

- Developing and Using Models
 - Modeling in K-2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
 - Develop a model to represent patterns in the natural world. (2-ESS2-2)

- Constructions Explaining and Designing Solutions
 - Constructing explanations and designing solutions in K-2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
 - Make observations from several sources to construct an evidence-based account for natural phenomena. (2-ESS1-1)
 - Compare multiple solutions to a problem. (2-ESS2-1)
 - Obtaining, evaluating, and communicating information
 - Obtaining information using various texts, text features (e.g., headings, tables of contents, glossaries, electronic menus, icons), and other media that will be useful in answering a scientific question. (2-ESS2-3)

Disciplinary Core Ideas

- ESS1.C: The History of Planet Earth
 - Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe. (2-ESS1-1)

- ESS2.A: Earth Materials and Systems
 - Wind and water can change the shape of the land. (2-ESS2-1)

- ESS2.B: Plate Tectonics and Large-Scale System Interactions
 - Maps show where things are located. One can map the shapes and kinds of land and water in any area. (2-ESS2-2)

- ESS2.C: The Roles of Water in Earth’s Surface Processes
 - Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form. (2-ESS2-3)

- ETS1.C: Optimizing the Design Solution
 - Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)

Crosscutting Concepts

- Patterns
 - Patterns in the natural world can be observed. (2-ESS2-2, 2-ESS2-3)

- Stability and Change
 - Things may change slowly or rapidly. (2-ESS1-1, 2-ESS2-1)

Connections to Engineering, Technology, and Applications of Science

- Influence of Engineering, Technology, and Science on Society and the Natural World
 - Developing and using technology has impacts on the natural world. (2-ESS2-1)

Connections to Nature of Science

- Science Addresses Questions About the Natural and Material World
 - Scientists study the natural and material world. (2-ESS2-1)

Connections to other DCIs in second grade:

- 2.PS1.A (2-ESS2-3)
- K.MTS1.A (2-ESS1-1); 3.MTS2.C (2-ESS1-1); 4.ESS1.C (2-ESS1-1); 4.ESS2.A (2-ESS1-1), (2-ESS2-1); 4.ESS2.B (2-ESS2-2); 4.ETS1.A (2-ESS2-1); 4.ETS1.B (2-ESS2-1); 4.ETS1.C (2-ESS2-1); 5.ESS2.A (2-ESS2-1); 5.ESS2.C (2-ESS2-1), (2-ESS2-3)

Common Core State Standards Connections:

- ELA/Literacy
 - RI.1.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-ESS1-1)
 - RI.2.3 Compare and contrast the most important points presented by two texts on the same topic. (2-ESS2-1)
 - W.6.2 With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (2-ESS1-1), (2-ESS2-3)
 - W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-ESS1-1)
 - W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-ESS1-1), (2-ESS2-3)
 - SL.2.2 Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. (2-ESS1-1)
 - SL.2.5 Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (2-ESS2-2)

- Mathematics
 - MP.2 Reason abstractly and quantitatively. (2-ESS2-1), (2-ESS2-1), (2-ESS2-2)
 - MP.4 Model with mathematics. (2-ESS1-1), (2-ESS2-1), (2-ESS2-2)
 - MP.5 Use appropriate tools strategically. (2-ESS2-1)
 - 2.NBT.A Understand place value. (2-ESS1-1)
 - 2.NBT.A.3 Read and write numbers to 1000 using base-ten numerals, number names, and expanded form. (2-ESS2-2)
 - 2.MD.B.5 Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem. (2-ESS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

September 2017 ©2013 Achieve, Inc. All rights reserved.
K-2. Engineering Design

Students who demonstrate understanding can:

K-2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

K-2-ETS1-2. Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

K-2-ETS1-3. Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

The performance expectations above were developed using the following elements from the NRC document: *A Framework for K-12 Science Education:*

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Asking Questions and Defining Problems</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking questions and defining problems in K-2 builds on prior experiences and progresses to simple descriptive questions.</td>
<td>ETS1A: Defining and Delimiting Engineering Problems</td>
<td></td>
</tr>
<tr>
<td>- Ask questions based on observations to find more information about the natural and/or designed world. (K-2-ETS1-1)</td>
<td>- A situation that people want to change or create can be approached as a problem to be solved through engineering. (K-2-ETS1-1)</td>
<td></td>
</tr>
<tr>
<td>- Define a simple problem that can be solved through the development of a new or improved object or tool. (K-2-ETS1-1)</td>
<td>- Asking questions, making observations, and gathering information are helpful in thinking about problems. (K-2-ETS1-1)</td>
<td></td>
</tr>
<tr>
<td>Developing and Using Models</td>
<td>ETS1B: Developing Possible Solutions</td>
<td></td>
</tr>
<tr>
<td>Modeling in K-2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.</td>
<td>- Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (K-2-ETS1-2)</td>
<td></td>
</tr>
<tr>
<td>- Develop a simple model based on evidence to represent a proposed object or tool. (K-2-ETS1-2)</td>
<td>ETS1C: Optimizing the Design Solution</td>
<td></td>
</tr>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>- Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (K-2-ETS1-3)</td>
<td></td>
</tr>
<tr>
<td>Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Analyze data from tests of an object or tool to determine if it works as intended. (K-2-ETS1-3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to K-2-ETS1.A: Defining and Delimiting Engineering Problems include:

Kindergarten: K-PS2-2, K-ESS3-2

Connections to K-2-ETS1.B: Developing Possible Solutions to Problems include:

Kindergarten: K-ESS3-3, First Grade: 1-PS4-4, Second Grade: 2-LS2-2

Connections to K-2-ETS1.C: Optimizing the Design Solution include:

Second Grade: 2-ESS2-1

Articulation of DCIs across grade-bands: 3-5.ETS1.A (K-2-ETS1-1), (K-2-ETS1-2), (K-2-ETS1-3); 3-5.ETS1.B (K-2-ETS1-2), (K-2-ETS1-3); 3-5.ETS1.C (K-2-ETS1-1), (K-2-ETS1-2), (K-2-ETS1-3)

Common Core State Standards Connections:

ELA/Literacy – RI.1.2 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (K-2-ETS1-1)

W.2.6 With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (K-2-ETS1-1), (K-2-ETS1-3)

W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (K-2-ETS1-1), (K-2-ETS1-3)

SL.2.5 Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (K-2-ETS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (K-2-ETS1-1), (K-2-ETS1-3)

MP.4 Model with mathematics. (K-2-ETS1-1), (K-2-ETS1-3)

MP.5 Use appropriate tools strategically. (K-2-ETS1-1), (K-2-ETS1-3)

2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (K-2-ETS1-1), (K-2-ETS1-3)

September 2017 ©2013 Achieve, Inc. All rights reserved.