Elementary Standards

Students in kindergarten through fifth grade begin to develop an understanding of the four disciplinary core ideas: physical sciences; life sciences; earth and space sciences; and engineering, technology, and applications of science. In the earlier grades, students begin by recognizing patterns and formulating answers to questions about the world around them. By the end of fifth grade, students are able to demonstrate grade-appropriate proficiency in gathering, describing, and using information about the natural and designed world(s). The performance expectations in elementary school grade bands develop ideas and skills that will allow students to explain more complex phenomena in the four disciplines as they progress to middle school and high school. While the performance expectations shown in kindergarten through fifth grade couple particular practices with specific disciplinary core ideas, instructional decisions should include use of many practices that lead to the performance expectations.
Kindergarten

The performance expectations in kindergarten help students formulate answers to questions such as: “What happens if you push or pull an object harder? Where do animals live and why do they live there? What is the weather like today and how is it different from yesterday?” Kindergarten performance expectations include PS2, PS3, LS1, ESS2, ESS3, and ETS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop understanding of patterns and variations in local weather and the purpose of weather forecasting to prepare for, and respond to, severe weather. Students are able to apply an understanding of the effects of different strengths or different directions of pushes and pulls on the motion of an object to analyze a design solution. Students are also expected to develop understanding of what plants and animals (including humans) need to survive and the relationship between their needs and where they live. The crosscutting concepts of patterns; cause and effect; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the kindergarten performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions, developing and using models, planning and carrying out investigations, analyzing and interpreting data, designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
**K.Forces and Interactions: Pushes and Pulls**

Students who demonstrate understanding can:

**K-PS2-1.** Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object. [Clarification Statement: Examples of pushes or pulls could include a string attached to an object being pulled, a person pushing an object, a person stopping a rolling ball, and two objects colliding and pushing on each other.] [Assessment Boundary: Assessment is limited to different relative strengths or different directions, but not both at the same time. Assessment does not include non-contact pushes or pulls such as those produced by magnets.]

**K-PS2-2.** Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.* [Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path or motion, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary: Assessment does not include friction as a mechanism for change in speed.]

The performance expectations above were developed using the following elements from the NRC document _A Framework for K-12 Science Education_.

---

**Science and Engineering Practices**

**Planning and Carrying Out Investigations**
Planning and carrying out investigations to answer questions or test solutions to problems in K-2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

- With guidance, plan and conduct an investigation in collaboration with peers. (K-PS2-1)

**Analyzing and Interpreting Data**
Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.

- Analyze data from tests of an object or tool to determine if it works as intended. (K-PS2-2)

**Connections to Nature of Science**

**Scientific Investigations Use a Variety of Methods**
- Scientists use different ways to study the world. (K-PS2-1)

**Disciplinary Core Ideas**

**PS2.A: Forces and Motion**
- Pushes and pulls can have different strengths and directions. (K-PS2-1), (K-PS2-2)
- Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. (K-PS2-1), (K-PS2-2)

**PS2.B: Types of Interactions**
- When objects touch or collide, they push on one another and can change motion. (K-PS2-1)

**PS3.C: Relationship Between Energy and Forces**
- A bigger push or pull makes things speed up or slow down more quickly. (secondary to K-PS2-1)

**ETS1.A: Defining Engineering Problems**
- A situation that people want to change or create can be approached as a problem to be solved through engineering. Such problems may have many acceptable solutions. (secondary to K-PS2-2)

---

**Crosscutting Concepts**

**Cause and Effect**
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (K-PS2-1), (K-PS2-2)

---

**Connections to other DCIs in kindergarten:** K.ETS1.A (K-PS2-2); K.ETS1.B (K-PS2-2)

**Articulation of DCIs across grade-levels:** 2.E.TS1.B (K-PS2-2); 3.PS2.A (K-PS2-1), (K-PS2-2); 3.PS2.B (K-PS2-1); 4.PS3.A (K-PS2-1); 4.E.TS1.A (K-PS2-2)

**Common Core State Standards Connections:**
- ELA/Literacy -
  - RI.K.1 With prompting and support, ask and answer questions about key details in a text. (K-PS2-2)
  - W.K.7 Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K-PS2-1)
  - SL.K.3 Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (K-PS2-2)
- Mathematics -
  - MP.2 Reason abstractly and quantitatively. (K-PS2-1)
  - K.MD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. (K-PS2-1)
  - K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. (K-PS2-1)

---

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.
## K. Interdependent Relationships in Ecosystems: Animals, Plants, and Their Environment

### Disciplinary Core Ideas

| K.LS1.1 | Use observations to describe patterns of what plants and animals (including humans) need to survive. [Clarification Statement: Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different types of animals; the requirement of plants to have light; and that all living things need water.] |
| K.ESS2.2 | Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs. [Clarification Statement: Examples of plants and animals changing their environment could include a squirrel digging in the ground to hide its food and tree roots can break concrete.] |
| K.ESS3.1 | Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live. [Clarification Statement: Examples of relationships could include that deer eat buds and leaves, therefore, they usually live in forested areas, and grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system.] |
| K.ESS3.3 | Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* [Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.] |

### Science and Engineering Practices

- Developing and Using Models: Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.  
  - Use a model to represent relationships in the natural world. (K.ESS3-1) 
  - Analyzing and Interpreting Data: Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.  
  - Use observations ( firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K.LS1-1) 
  - Engaging in Argument from Evidence: Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).  
  - Construct an argument with evidence to support a claim. (K.ESS2-2) 
  - Obtaining, Evaluating, and Communicating Information: Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.  
  - Communicate solutions with others in oral and/or written forms using models and/or drawings that provide detail about scientific ideas. (K.ESS3-3) 

---

### Crosscutting Concepts

- Patterns: Patterns in the natural and human designed world can be observed and used as evidence. (K.LS1-1) 
- Cause and Effect: Events have causes that generate observable patterns. (K.ESS3-3) 
- Systems and System Models: Systems in the natural and designed world have parts that work together. (K.ESS2-2), (K.ESS3-1)

### Connections to Nature of Science

- Scientific Knowledge is Based on Empirical Evidence: Scientists look for patterns and order when making observations about the world. (K.LS1-1) 

### Common Core State Standards Connections

**ELA/Literacy** –
- RI.K.1 With prompting and support, ask and answer questions about key details in a text. (K.ESS2-2) 
- W.K.1 Use a combination of drawing, dictating, and writing to compose opinion pieces in which they tell a reader the topic or the name of the book they are writing about and state an opinion or preference about the topic or book. (K.ESS2-2) 
- W.K.2 Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic. (K.ESS2-2), (K.ESS3-3) 
- W.K.7 Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K.LS1-1) 
- SL.K.5 Add drawings or other visual displays to descriptions as desired to provide additional detail. (K.ESS3-1) 

**Mathematics** –
- MP.2 Reason abstractly and quantitatively. (K.ESS3-1) 
- MP.4 Model with mathematics. (K.ESS1-1) 
- K.CC Counting and Cardinality (K.ESS1-1) 
- K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference. (K.LS1-1)

---

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K–12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*

September 2017 ©2013 Achieve, Inc. All rights reserved.
K. Weather and Climate

**K-PS3.1.** Make observations to determine the effect of sunlight on Earth’s surface. [Clarification Statement: Examples of Earth’s surface could include sand, soil, rocks, and water] [Assessment Boundary: Assessment of temperature is limited to relative measures such as warmer/cooler.]

**K-PS3.2.** Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.* [Clarification Statement: Examples of structures could include umbrellas, canopies, and tents that minimize the warming effect of the sun.]

**K-ESS2.1.** Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of quantitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]

**K-ESS3.2.** Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.* [Clarification Statement: Emphasis is on local forms of severe weather.]

---

**Science and Engineering Practices**

### Asking Questions and Defining Problems
- Asking questions and defining problems in grades K–2 builds on prior experiences and progresses to simple descriptive questions that can be tested.
  - Ask questions based on observations to find more information about the designed world. (K-ESS2-2)

### Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
  - Make observations (firsthand or from media) to collect data that can be used to make comparisons. (K-PS3-1)

### Analyzing and Interpreting Data
- Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
  - Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K-ESS2-1)

### Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
  - Use tools and materials provided to design and build a device that solves a specific problem or a solution to a specific problem. (K-PS3-2)

### Obtaining, Evaluating, and Communicating Information
- Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.
  - Read grade-appropriate texts and/or use media to obtain scientific information to describe patterns in the natural world. (K-ESS2-2)

---

**Disciplinary Core Ideas**

**PS3.B:** Conservation of Energy and Energy Transfer
- Sunlight warms Earth’s surface. (K-PS3-1), (K-PS3-2)

**ESS2.D:** Weather and Climate
- Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time. (K-ESS2-2)

**ESS3.B:** Natural Hazards
- Some kinds of severe weather are more likely than others in a given region. Weather scientists forecast severe weather so that the communities can prepare for and respond to these events. (K-ESS3-2)

**ETS1.A:** Defining and Delimiting an Engineering Problem
- Asking questions, making observations, and gathering information are helpful in thinking about problems. (secondary to K-ESS3-2)

---

**Crosscutting Concepts**

**Patterns**
- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (K-ESS2-1)

**Cause and Effect**
- Events have causes that generate observable patterns. (K-PS3-1), (K-PS3-2), (K-ESS3-2)

---

**Connections to Engineering, Technology, and Applications of Science**

**Interdependence of Science, Engineering, and Technology**
- People encounter questions about the natural world every day. (K-ESS3-2)

**Influence of Engineering, Technology, and Science on Society and the Natural World**
- People depend on various technologies in their lives; human life would be very different without technology. (K-ESS3-2)

---

**Connections to other DCIs in kindergarten:**
- **K.ETS1.A** (K-PS3-2), (K-ESS3-2), (K-ESS3-2)
- **K.ESS1.B** (K-PS3-2)

**Articulation of DCIs across grade-levels:**

**Common Core State Standards Connections:**
- **ELA/Literacy – RI.K.1** With prompting and support, ask and answer questions about key details in a text. (K-ESS2-2)
- **W.K.7** Participate in shared research and writing projects (e.g., explore a number of books by a favorite author and express opinions about them). (K-PS3-1), (K-PS3-2), (K-ESS2-1)
- **SL.K.3** Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (K-ESS2-2)
- **Mathematics – MP.2** Reason abstractly and quantitatively. (K-ESS2-1)
- **MP.4** Model with mathematics. (K-ESS2-1), (K-ESS2-2)
- **K.CC** Counting and Cardinality (K-ESS2-2)
- **K.CC.A** Know number names and the count sequence. (K-ESS2-1)
- **K.MD.A.1** Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. (K-ESS2-1)
- **K.MD.A.2** Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. (K-PS3-1), (K-PS3-2)
- **K.MD.B.3** Classify objects into given categories; count the number of objects in each category and sort the categories by count. (K-ESS2-1)

---

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*

September 2017 ©2013 Achieve, Inc. All rights reserved.
First Grade

The performance expectations in first grade help students formulate answers to questions such as: “What happens when materials vibrate? What happens when there is no light? What are some ways plants and animals meet their needs so that they can survive and grow? How are parents and their children similar and different? What objects are in the sky and how do they seem to move?” First grade performance expectations include PS4, LS1, LS3, and ESS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop understanding of the relationship between sound and vibrating materials as well as between the availability of light and ability to see objects. The idea that light travels from place to place can be understood by students at this level through determining the effect of placing objects made with different materials in the path of a beam of light. Students are also expected to develop understanding of how plants and animals use their external parts to help them survive, grow, and meet their needs as well as how behaviors of parents and offspring help the offspring survive. The understanding is developed that young plants and animals are like, but not exactly the same as, their parents. Students are able to observe, describe, and predict some patterns of the movement of objects in the sky. The crosscutting concepts of patterns; cause and effect; structure and function; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the first grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
1. Waves: Light and Sound

Science and Engineering Practices

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
- Plan and conduct investigations collaboratively to produce data to serve as the basis for evidence to answer a question. (1-PS4-1), (1-PS4-3)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena (1-PS4-2)
- Use tools and materials provided to design a device that solves a specific problem. (1-PS4-4)

Connects to other DCIs in first grade: NA/A

Science and Engineering Practices

Articulation of DCIs across grade-levels: K.ETS1.A (1-PS4-4); 2.PS1.A (1-PS4-3); 2.ETS1.B (1-PS4-4); 4.PS4.C (1-PS4-4); 4.PS4.B (1-PS4-2); 4.ETS1.A (1-PS4-4)

Common Core State Standards Connections:

ELA/Literacy –

W.1.2 Write informative/explanatory texts in which they name a topic, supply some facts about the topic, and provide some sense of closure. (1-PS4-2)
W.1.7 Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use them to write a sequence of instructions). (1-PS4-1), (1-PS4-2), (1-PS4-3), (1-PS4-4)
W.1.8 With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-PS4-1), (1-PS4-2), (1-PS4-3)
SL.1.1 Participate in collaborative conversations with diverse partners about grade 1 topics and texts with peers and adults in small and larger groups. (1-PS4-1), (1-PS4-2), (1-PS4-3)

Mathematics –

MP.5 Use appropriate tools strategically. (1-PS4-4)
1.MD.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object. (1-PS4-4)
1.MD.2 Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. (1-PS4-4)

Disciplinary Core Ideas

PS4.A: Wave Properties
- Sound can make matter vibrate, and vibrating matter can make sound. (1-PS4-1)

PS4.B: Electromagnetic Radiation
- Objects can be seen if light is available to illuminate them or if they give off their own light. (1-PS4-2)
- Some materials allow light to pass through them, others allow only some light through and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach. Mirrors can be used to redirect a light beam. (Boundary: The idea that light travels from place to place is developed through experiences with light sources, mirrors, and shadows, but no attempt is made to discuss the speed of light.) (1-PS4-3)

PS4.C: Information Technologies and Instrumentation
- People also use a variety of devices to communicate (send and receive information) over long distances. (1-PS4-4)

Crosscutting Concepts

Cause and Effect
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (1-PS4-1), (1-PS4-2), (1-PS4-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science, on Society and the Natural World
- People depend on various technologies in their lives; human life would be very different without technology. (1-PS4-4)
### 1. Structure, Function, and Information Processing

**Science and Engineering Practices**

**Constructing Explanations and Designing Solutions**

Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (1-LS1-1)
- Use materials to design a device that solves a specific problem or a solution to a specific problem. (1-LS1-1)

**Obtaining, Evaluating, and Communicating Information**

Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.

- Read grade-appropriate texts and use media to obtain scientific information to determine patterns in the natural world. (1-LS1-2)

---

**Disciplinary Core Ideas**

**LS1.A: Structure and Function**

- All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (1-LS1-1)

**LS1.B: Growth and Development of Organisms**

- Adult plants and animals can have young. In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive. (1-LS1-2)

**LS1.D: Information Processing**

- Animals have body parts that capture and convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs. (1-LS1-1)

**LS3.A: Inheritance of Traits**

- Young animals are very much, but not exactly, like their parents. Plants also are very much, but not exactly, like their parents. (1-LS3-1)

**LS3.B: Variation of Traits**

- Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways. (1-LS3-1)

**Crosscutting Concepts**

**Patterns**

- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-LS1-2), (1-LS3-1)

**Structure and Function**

- The shape and stability of structures of natural and designed objects are related to their function(s). (1-LS1-1)

---

**Connections to Nature of Science**

**Scientific Knowledge is Based on Empirical Evidence**

- Scientists look for patterns and order when making observations about the world. (1-LS1-2)

---

**Articulation of DCIs across grade-levels:**


---

**Common Core State Standards Connections:**

**ELA/Literacy –**

- RI.1.1 Ask and answer questions about key details in a text. (1-LS1-2), (1-LS1-1)
- RI.1.2 Identify the main topic and retell key details of a text. (1-LS1-2)
- RI.1.10 With prompting and support, read informational texts appropriately complex for grade. (1-LS1-2)
- W.1.7 Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use them to write a sequence of instructions). (1-LS1-1), (1-LS1-2)
- W.1.8 With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-LS1-2)

**Mathematics –**

- MP.2 Reason abstractly and quantitatively. (1-LS1-3)
- MP.5 Use appropriate tools strategically. (1-LS1-3)
- 1.NBT.B.3 Compare two-digit numbers based on the meanings of the tens and one digits, recording the results of comparisons with the symbols >, =, and <. (1-LS1-2)
- 1.NBT.C.4 Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning uses. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. (1-LS1-2)
- 1.NBT.C.5 Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. (1-LS1-2)
- 1.NBT.C.6 Subtract multiples of 10 in the range 10–90 from multiples of 10 in the range 10–90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. (1-LS1-2)
- 1.MD.A.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object. (1-LS1-2)

---

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K–12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*

September 2017 ©2013 Achieve, Inc. All rights reserved. 8 of 30
### 1.Space Systems: Patterns and Cycles

Students who demonstrate understanding can:

**1-ESS1-1. Use observations of the sun, moon, and stars to describe patterns that can be predicted.**  [Clarification Statement: Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars other than our sun are visible at night but not during the day.]  [Assessment Boundary: Assessment of star patterns is limited to stars being seen at night and not during the day.]

**1-ESS1-2. Make observations at different times of year to relate the amount of daylight to the time of year.**  [Clarification Statement: Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring or fall.]  [Assessment Boundary: Assessment is limited to relative amounts of daylight, not quantifying the hours or time of daylight.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Planning and Carrying Out Investigations</strong></td>
<td><strong>ESS1.A: The Universe and Its Stars</strong></td>
<td><strong>Patterns</strong></td>
</tr>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in K-2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.</td>
<td>• Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted. (1-ESS1-1)</td>
<td>• Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-ESS1-1),(1-ESS1-2)</td>
</tr>
<tr>
<td><strong>Analyzing and Interpreting Data</strong></td>
<td><strong>ESS1.B: Earth and the Solar System</strong></td>
<td><strong>Connections to Nature of Science</strong></td>
</tr>
<tr>
<td>Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.</td>
<td>• Seasonal patterns of sunrise and sunset can be observed, described, and predicted. (1-ESS1-2)</td>
<td><strong>Scientific Knowledge Assumes an Order and Consistency in Natural Systems</strong></td>
</tr>
<tr>
<td>• Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (1-ESS1)</td>
<td></td>
<td>• Science assumes natural events happen today as they happened in the past. (1-ESS1-1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Many events are repeated. (1-ESS1-1)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in first grade: N/A

Articulation of DCIs across grade-levels: **3-PS2.A (1-ESS1-1); 5-PS2.B (1-ESS1-1),(1-ESS1-2) 5-Ess1.B (1-ESS1-1),(1-ESS1-2)**

**Common Core State Standards Connections:**

**ELA/Literacy –**

- **W.1.7** Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use them to write a sequence of instructions). (1-ESS1-1),(1-ESS1-2)

- **W.1.8** With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-ESS1-1),(1-ESS1-2)

**Mathematics –**

- **MP.2** Reason abstractly and quantitatively. (1-ESS1-2)

- **MP.4** Model with mathematics. (1-ESS1-2)

- **MP.5** Use appropriate tools strategically. (1-ESS1-2)

- **1.OA.A.1** Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations to represent the problem. (1-ESS1-2)

- **1.MD.C.4** Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. (1-ESS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas*. Integrated and reprinted with permission from the National Academy of Sciences.*
Second Grade

The performance expectations in second grade help students formulate answers to questions such as: “How does land change and what are some things that cause it to change? What are the different kinds of land and bodies of water? How are materials similar and different from one another, and how do the properties of the materials relate to their use? What do plants need to grow? How many types of living things live in a place?” Second grade performance expectations include PS1, LS2, LS4, ESS1, ESS2, and ETS1 Disciplinary Core Ideas from the NRC Framework. Students are expected to develop an understanding of what plants need to grow and how plants depend on animals for seed dispersal and pollination. Students are also expected to compare the diversity of life in different habitats. An understanding of observable properties of materials is developed by students at this level through analysis and classification of different materials. Students are able to apply their understanding of the idea that wind and water can change the shape of the land to compare design solutions to slow or prevent such change. Students are able to use information and models to identify and represent the shapes and kinds of land and bodies of water in an area and where water is found on Earth. The crosscutting concepts of patterns; cause and effect; energy and matter; structure and function; stability and change; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the second grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
2. Structure and Properties of Matter

Students who demonstrate understanding can:

2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]

2-PS1-2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* [Clarification Statement: Examples of properties could include, strength, flexibility, hardness, texture, and absorptivity.] [Assessment Boundary: Assessment of quantitative measurements is limited to length.]

2-PS1-3. Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. [Clarification Statement: Examples of pieces could include blocks, building bricks, or other assorted small objects.]

2-PS1-4. Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. [Clarification Statement: Examples of reversible changes could include materials such as water and butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and heating paper.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

Analyzing and Interpreting Data
Analyzing in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
- Analyze data from tests of an object or tool to determine if it works as intended. (2-PS1-2)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).
- Construct an argument with evidence to support a claim. (2-PS1-4)

Disciplinary Core Ideas

- Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)
- Different properties are suited to different purposes. (2-PS1-2), (2-PS1-3)
- A great variety of objects can be built up from a small set of pieces. (2-PS1-3)

PS1.B: Chemical Reactions
- Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not. (2-PS1-4)

Crosscutting Concepts

Patterns
- Patterns in the natural and human designed world can be observed. (2-PS1-1)

Cause and Effect
- Events have causes and generate observable patterns. (2-PS1-4)
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (2-PS1-2)

Energy and Matter
- Objects may break into smaller pieces and be put together into larger pieces, or change shapes. (2-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World
- Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world. (2-PS1-2)

Connections to other DCIs in second grade: N/A

Articulation of DCIs across grade-levels: 4.ESS2.A (2-PS1-3); 5.ESS1.A (2-PS1-1), (2-PS1-2), (2-PS1-3); 5.ESS1.B (2-PS1-4); 5.LS2.A (2-PS1-3)

Common Core State Standards Connections:
- ELA/Literacy –
  R.I.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-PS1-4)
  R.I.2.3 Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-PS1-4)
  R.I.2.8 Describe how reasons support specific points the author makes in a text. (2-PS1-2), (2-PS1-4)
  W.2.1 Write opinion pieces in which they introduce the topic or book they are writing about, state an opinion, supply reasons that support the opinion, use linking words (e.g., because, and, also) to connect opinion and reasons, and provide a concluding statement or section. (2-PS1-4)
  W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-PS1-1),(2-PS1-2), (2-PS1-3)
  W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1), (2-PS1-2), (2-PS1-3)
- Mathematics –
  MP.2 Reason abstractly and quantitatively. (2-PS1-2)
  MP.4 Model with mathematics. (2-PS1-1), (2-PS1-2)
  MP.5 Use appropriate tools strategically. (2-PS1-2)
  2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1), (2-PS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

September 2017 ©2013 Achieve, Inc. All rights reserved.
## 2. Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

**2-LS2-1. Plan and conduct an investigation to determine if plants need sunlight and water to grow.** [Assessment Boundary: Assessment is limited to testing one variable at a time.]

**2-LS2-2. Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.*

**2-LS4-1. Make observations of plants and animals to compare the diversity of life in different habitats.** [Clarification Statement: Emphasis is on the diversity of living things in each of a variety of different habitats.][Assessment Boundary: Assessment does not include specific animal and plant names in specific habitats.]

---

### Science and Engineering Practices

**Developing and Using Models**
Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.

- Develop a simple model based on evidence to represent a proposed object or tool. (2-LS2-2)

**Planning and Carrying Out Investigations**
Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-LS2-1)
- Make observations (firsthand or from media) to collect data which can be used to make comparisons. (2-LS4-1)

---

### Disciplinary Core Ideas

**LS2.A: Interdependent Relationships in Ecosystems**
- Plants depend on water and light to grow. (2-LS2-1)
- Plants depend on animals for pollination or to move their seeds around. (2-LS2-2)

**LS4.D: Biodiversity and Humans**
- There are many different kinds of living things in any area, and they exist in different places on land and in water. (2-LS4-1)

**ETS1.B: Developing Possible Solutions**
- Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (Secondary to 2-LS2-2)

---

### Crosscutting Concepts

**Cause and Effect**
- Events have causes that generate observable patterns. (2-LS2-1)

**Structure and Function**
- The shape and stability of structures of natural and designed objects are related to their function(s). (2-LS2-2)

---

**Connections to Nature of Science**

**Scientific Knowledge is Based on Empirical Evidence**
- Scientists look for patterns and order when making observations about the world. (2-LS4-1)

**Connections to other DCIs in second grade:** N/A

**Articulation of DCIs across grade-Levels:** K.LS1.C (2-LS2-1); K.ESS3.A (2-LS2-1); K.ETS1.A (2-LS2-2); 3.LS4.C (2-LS4-1); 3.LS4.D (2-LS4-1); 5.LS1.C (2-LS2-1); 5.LS2.A (2-LS2-2), (2-LS4-1)

**Common Core State Standards Connections:**

**ELA/Literacy –**

- W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-LS2-1), (2-LS4-1)

- W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-LS2-1), (2-LS4-1)

- SL.2.5 Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (2-LS2-2)

**Mathematics –**

- MP.2 Reason abstractly and quantitatively. (2-LS2-1), (2-LS4-1)

- MP.4 Model with mathematics. (2-LS2-1), (2-LS2-2), (2-LS4-1)

- MP.5 Use appropriate tools strategically. (2-LS2-1)

- 2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems. (2-LS2-1), (2-LS4-1)

---

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*

September 2017 ©2013 Achieve, Inc. All rights reserved.
### 2. Earth’s Systems: Processes that Shape the Earth

#### Science and Engineering Practices

**Developing and Using Models**
- Modeling in K-2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
  - Develop a model to represent patterns in the natural world. (2-ESS2-2)

**Constructing Explanations and Designing Solutions**
- Constructing explanations and designing solutions in K-2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
  - Make observations from several sources to construct an evidence-based account for natural phenomena. (2-ESS1-1)
  - Compare multiple solutions to a problem. (2-ESS2-1)

**Obtaining, Evaluating, and Communicating Information**
- Obtaining, evaluating, and communicating information in K-2 builds on prior experiences and uses observations and texts to communicate new information.
  - Obtain information using various texts, text features (e.g., headings, tables of contents, glossaries, electronic menus, icons), and other media that will be useful in answering a scientific question. (2-ESS2-3)

#### Disciplinary Core Ideas

**ESS1.C: The History of Planet Earth**
- Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe. (2-ESS1-1)

**ESS2.A: Earth Materials and Systems**
- Wind and water can change the shape of the land. (2-ESS1-2)

**ESS2.B: Plate Tectonics and Large-Scale System Interactions**
- Maps show where things are located. One can map the shapes and kinds of land and water in any area. (2-ESS2-2)

**ESS2.C: The Roles of Water in Earth’s Surface Processes**
- Water exists as solid ice and in liquid form. (2-ESS2-3)

**ETS1.C: Optimizing the Design Solution**
- Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (Secondary to 2-ESS2-1)

#### Crosscutting Concepts

**Patterns**
- Patterns in the natural world can be observed. (2-ESS2-2, 2-ESS2-3)

**Stability and Change**
- Things may change slowly or rapidly. (2-ESS1-1, 2-ESS2-1)

**Connections to Engineering, Technology, and Applications of Science**
- Developing and using technology has impacts on the natural world. (2-ESS2-1)

**Connections to Nature of Science**
- Scientists study the natural and material world. (2-ESS2-1)

**Science Addresses Questions About the Natural and Material World**

#### Common Core State Standards Connections:

**ELA/Literacy –**
- RI.2.1: Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-ESS1-1)
- RI.2.3: Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-ESS1-1, 2-ESS2-1)
- RI.2.9: Compare and contrast the most important points presented by two texts on the same topic, (2-ESS2-1)
- W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (2-ESS1-1, 2-ESS2-3)
- W.2.7: Participate in shared research and writing projects (e.g., a number of books on a single topic to produce a report; record science observations). (2-ESS1-1)
- W.2.8: Recall information from experiences or gather information from provided sources to answer a question. (2-ESS1-1, 2-ESS2-3)
- SL.2.2: Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. (2-ESS1-1)
- SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (2-ESS2-2)

**Mathematics –**
- MP.2: Reason abstractly and quantitatively. (2-ESS2-1, 2-ESS2-2)
- MP.4: Model with mathematics. (2-ESS1-1, 2-ESS2-1, 2-ESS2-2)
- MP.5: Use appropriate tools strategically. (2-ESS2-1)

2.NBT.A: Understand place value. (2-ESS1-1)
- 2.NBT.A.3: Read and write numbers to 1000 using base-ten numerals, number names, and expanded form. (2-ESS2-2)
- 2.MD.B.5: Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations for the unknown number to represent the problem. (2-ESS2-1)

---

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

September 2017
©2013 Achieve, Inc. All rights reserved.

13 of 30
K-2. Engineering Design

Students who demonstrate understanding can:

**K-2-ETS1-1.** Ask questions, make observations, and gather information about a situation people want to change or create a simple problem that can be solved through the development of a new or improved object or tool.

**K-2-ETS1-2.** Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

**K-2-ETS1-3.** Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

### Science and Engineering Practices

#### Asking Questions and Defining Problems
- Asking questions based on observations to find more information about the natural and/or designed world. (K-2-ETS1-1)
- Define a simple problem that can be solved through the development of a new or improved object or tool. (K-2-ETS1-1)

#### Developing and Using Models
- Modeling in K-2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
- Develop a simple model based on evidence to represent a proposed object or tool. (K-2-ETS1-2)

#### Analyzing and Interpreting Data
- Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
- Analyze data from tests of an object or tool to determine if it works as intended. (K-2-ETS1-3)

### Disciplinary Core Ideas

#### ETS1A: Defining and Delimiting Engineering Problems
- A situation that people want to change or create can be approached as a problem to be solved through engineering. (K-2-ETS1-1)
- Asking questions, making observations, and gathering information are helpful in thinking about problems. (K-2-ETS1-1)
- Before beginning to design a solution, it is important to clearly understand the problem. (K-2-ETS1-1)

#### ETS1B: Developing Possible Solutions
- Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem's solutions to other people. (K-2-ETS1-2)

#### ETS1C: Optimizing the Design Solution
- Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (K-2-ETS1-3)

### Crosscutting Concepts

#### Structure and Function
- The shape and stability of structures of natural and designed objects are related to their function(s). (K-2-ETS1-2)

### Articulation of DCIs across grade-bands:
- **3-5.ETS1.A** (K-2-ETS1-1),(K-2-ETS1-2),(K-2-ETS1-3); **3-5.ETS1.B** (K-2-ETS1-2),(K-2-ETS1-3); **3-5.ETS1.C** (K-2-ETS1-1),(K-2-ETS1-2),(K-2-ETS1-3)

### Common Core State Standards Connections:

#### ELA/Literacy
- RI.2.1: Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (K-2-ETS1-1)
- W.2.6: With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (K-2-ETS1-1),(K-2-ETS1-3)
- W.2.8: Recall information from experiences or gather information from provided sources to answer a question. (K-2-ETS1-1),(K-2-ETS1-3)
- SL.2.5: Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (K-2-ETS1-2)

#### Mathematics
- MP.2: Reason abstractly and quantitatively. (K-2-ETS1-1),(K-2-ETS1-3)
- MP.4: Model with mathematics. (K-2-ETS1-1),(K-2-ETS1-3)
- MP.5: Use appropriate tools strategically. (K-2-ETS1-1),(K-2-ETS1-3)
- 2.MD.D.10: Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (K-2-ETS1-1),(K-2-ETS1-3)


September 2017 ©2013 Achieve, Inc. All rights reserved.
Third Grade

The performance expectations in third grade help students formulate answers to questions such as: “What is typical weather in different parts of the world and during different times of the year? How can the impact of weather-related hazards be reduced? How do organisms vary in their traits? How are plants, animals, and environments of the past similar or different from current plants, animals, and environments? What happens to organisms when their environment changes? How do equal and unequal forces on an object affect the object? How can magnets be used?” Third grade performance expectations include PS2, LS1, LS2, LS3, LS4, ESS2, and ESS3 Disciplinary Core Ideas from the NRC Framework. Students are able to organize and use data to describe typical weather conditions expected during a particular season. By applying their understanding of weather-related hazards, students are able to make a claim about the merit of a design solution that reduces the impacts of such hazards. Students are expected to develop an understanding of the similarities and differences of organisms’ life cycles. An understanding that organisms have different inherited traits, and that the environment can also affect the traits that an organism develops, is acquired by students at this level. In addition, students are able to construct an explanation using evidence for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. Students are expected to develop an understanding of types of organisms that lived long ago and also about the nature of their environments. Third graders are expected to develop an understanding of the idea that when the environment changes some organisms survive and reproduce, some move to new locations, some move into the transformed environment, and some die. Students are able to determine the effects of balanced and unbalanced forces on the motion of an object and the cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. They are then able to apply their understanding of magnetic interactions to define a simple design problem that can be solved with magnets. The crosscutting concepts of patterns; cause and effect; scale, proportion, and quantity; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the third grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions and defining problems; developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
3. Forces and Interactions

Students who demonstrate understanding can:

3-PS2-1. Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. [Clarification Statement: Examples could include an unbalanced force on one side of a ball can make it start moving; and, balanced forces pushing on a box from both sides will not produce any motion at all.] [Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to gravity being addressed as a force that affects objects down.]  

3-PS2-2. Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]  

3-PS2-3. Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]  

3-PS2-4. Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]

### Science and Engineering Practices

**Asking Questions and Defining Problems**  
Asking questions and defining problems in grades 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.  
- Ask questions that can be investigated based on patterns such as cause and effect relationships. (3-PS2-3)  
- Define a simple problem that can be solved through the development of a new or improved object or tool. (3-PS2-4)

**Planning and Carrying Out Investigations**  
Planning and carrying out investigations to answer questions or test solutions to problems in grades 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.  
- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-PS2-1)  
- Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. (3-PS2-2)

### Disciplinary Core Ideas

**PS2.A: Forces and Motion**  
- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) (3-PS2-1)  
- The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.) (3-PS2-2)

**PS2.B: Types of Interactions**  
- Objects in contact exert forces on each other. (3-PS2-1)  
- Electric and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other. (3-PS2-3),(3-PS2-4)

### Crosscutting Concepts

**Patterns**  
- Patterns of change can be used to make predictions. (3-PS2-2)

**Cause and Effect**  
- Cause and effect relationships are routinely identified. (3-PS2-1)  
- Cause and effect relationships are routinely identified, tested, and used to explain change. (3-PS2-3)

### Connections to Engineering, Technology, and Applications of Science

**Interdependence of Science, Engineering, and Technology**  
- Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the engineering design process. (3-PS2-4)

### Connections to Other DCIs in Third Grade: N/A

**Articulation of DCIs across grade levels:**  
- K.PS2.A (3-PS2-1); K.PS2.B (3-PS2-1); K.PS2.C (3-PS2-1); K.ETS1.A (3-PS2-4); 1.ESS1.A (3-PS2-2); 1.ESS1.B (3-PS2-2); 1.ESS1.C (3-PS2-4); 1.EPS4.A (3-PS2-2); 1.EPS4.A (3-PS2-2); 3.SEL1A (3-PS2-4); 5.PS2.B (3-PS2-1); 5.PS2.A (3-PS2-1),(3-PS2-2); 5.PS2.A (3-PS2-3),(3-PS2-4); MS.PS2.B (3-PS2-1),(3-PS2-2); MS.ESS1.B (3-PS2-1),(3-PS2-2); MS.ESS2.C (3-PS2-1)

**Common Core State Standards Connections:**  
- **ELA/Literacy**
  - **RI.3.1** Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-PS2-1),(3-PS2-3)
  - **RI.3.3** Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-PS2-3)
  - **RI.3.8** Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). (3-PS2-3)
  - **W.3.7** Conduct short research projects that build knowledge about a topic. (3-PS2-1),(3-PS2-2)
  - **W.3.8** Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-PS2-1),(3-PS2-2)
  - **SL.3.3** Ask and answer questions about information from a speaker, offering appropriate elaboration and detail. (3-PS2-3)
- **Mathematics**
  - **MP.2** Reason abstractly and quantitatively. (3-PS2-1)
  - **MP.5** Use appropriate tools strategically. (3-PS2-1)
  - **3.MD.A.2** Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (3-PS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K–12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

September 2017 ©2013 Achieve, Inc. All rights reserved.
3.Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

3-LS2-1. Construct an argument that some animals form groups that help members survive.

3-LS4-1. Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. [Clarification Statement: Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms.] [Assessment Boundary: Assessment does not include identification of specific fossils or present plants and animals. Assessment is limited to major fossil types and relative ages.]

3-LS4-3. Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. [Clarification Statement: Examples of evidence could include needs and characteristics of the organisms and their habitats involved. The organisms and their habitat make up a system in which the parts depend on each other.]

3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.* [Clarification Statement: Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.] [Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.]

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

- Analyzing and Interpreting Data
- Engaging in Argument from Evidence

Disciplinary Core Ideas

- Ecosystem Dynamics, Functioning, and Resilience
  - When the environment changes in ways that affect a place’s physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. (secondary to 3-LS4-4)

- Social Interactions and Group Behavior
  - Being part of a group helps animals obtain food, defend themselves, and cope with changes. Groups may serve different functions and vary dramatically in size. (Note: Moved from K–2) (3-LS2-1)

- Evidence of Common Ancestry and Diversity
  - Some kinds of plants and animals that once lived on Earth are no longer found anywhere. (Note: Moved from K–2) (3-LS4-1)

- Fossils provide evidence of the types of organisms that lived long ago and also about the nature of their environments. (3-LS4-1)

- Adaptation
  - For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all. (3-LS4-3)

- Biodiversity and Humans
  - Populations live in a variety of habitats, and change in those habitats affects the organisms living there. (3-LS4-3)

Crosscutting Concepts

- Cause and Effect
  - Cause and effect relationships are routinely identified and used to explain change. (3-LS2-1), (3-LS4-3)
  - Scale, Proportion, and Quantity
  - Observable phenomena exist from very short to very long time periods. (3-LS4-1)

Systems and System Models

- A system can be described in terms of its components and their interactions. (3-LS4-4)

Connections to Engineering, Technology, and Applications of Science

- Interdependence of Science, Engineering, and Technology
  - Knowledge of relevant scientific concepts and research findings is important in engineering. (3-LS4-4)

- Connections to Nature of Science
  - Scientific Knowledge Assumes an Order and Consistency in Natural Systems
  - Science assumes consistent patterns in natural systems. (3-LS4-1)

Common Core State Standards Connections:

- ELA/Literacy –
  - RI.2.1 Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-LS2-1), (3-LS4-1), (3-LS4-3), (3-LS4-4)
  - RI.2.2 Determine the main idea of a text; recount the key details and explain how they support the main idea. (3-LS4-1), (3-LS4-3), (3-LS4-4)
  - RI.3.2 Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-LS2-1), (3-LS4-1), (3-LS4-3), (3-LS4-4)
  - W.3.1 Write opinion pieces on topics or texts, supporting a point of view with reasons. (3-LS2-1), (3-LS4-1), (3-LS4-3), (3-LS4-4)
  - W.3.2 Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (3-LS4-1), (3-LS4-3), (3-LS4-4)
  - W.3.8 Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-LS4-1)
  - SL.3.4 Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. (3-LS4-3), (3-LS4-4)

- Mathematics –
  - MP.2 Reason abstractly and quantitatively. (3-LS4-1), (3-LS4-3), (3-LS4-4)
  - MP.4 Model with mathematics. (3-LS2-1), (3-LS4-1), (3-LS4-3), (3-LS4-4)
  - MP.5 Use appropriate tools strategically. (3-LS4-1)
  - 3.NBT Number and Operations in Base Ten (3-LS2-1)
  - 3.MD.B.3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. (3-LS4-2)
  - 3.MD.B.4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters. (3-LS4-1)
3. Inheritance and Variation of Traits: Life Cycles and Traits

Students who demonstrate understanding can:

3-LS1-1. Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. [Clarification Statement: Changes organisms go through during their life form a pattern.] [Assessment Boundary: Assessment of plant life cycles is limited to those of flowering plants. Assessment does not include details of human reproduction.]

3-LS3-1. Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. [Clarification Statement: Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.] [Assessment Boundary: Assessment does not include genetic mechanisms of inheritance and prediction of traits. Assessment is limited to non-human examples.]

3-LS3-2. Use evidence to support the explanation that traits can be influenced by the environment. [Clarification Statement: Examples of the environment affecting a trait could include normally tall plants grown with insufficient water are stunted; and, a pet dog that is given too much food and little exercise may become overweight.]

3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. [Clarification Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.]

Science and Engineering Practices

Developing and Using Models
Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop models to describe phenomena. (3-LS1-1)

Analyzing and Interpreting Data
Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

- Analyze and interpret data to make sense of phenomena using logical reasoning. (3-LS3-1)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to using the evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Use evidence (e.g., observations, patterns) to support an explanation. (3-LS3-2)
- Use evidence (e.g., observations, patterns) to construct an explanation. (3-LS4-2)

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms
- Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles. (3-LS1-1)

LS3.A: Inheritance of Traits
- Many characteristics of organisms are inherited from their parents. (3-LS3-1)
- Other characteristics result from individuals’ interactions with the environment, which can range from diet to learning. Many characteristics involve both inheritance and environment. (3-LS3-2)

LS3.B: Variation of Traits
- Different organisms vary in how they look and function because they have different inherited information. (3-LS3-1)
- The environment also affects the traits that an organism develops. (3-LS3-2)

LS4.B: Natural Selection
- Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing. (3-LS4-2)

Crosscutting Concepts

Patterns
- Similarities and differences in patterns can be used to sort and classify natural phenomena. (3-LS3-1)
- Patterns of change can be used to make predictions. (3-LS1-1)

Cause and Effect
- Cause and effect relationships are routinely identified and used to explain change. (3-LS3-2),(3-LS4-2)

Scientific Knowledge is Based on Empirical Evidence
- Science findings are based on recognizing patterns. (3-LS1-1)

Common Core State Standards Connections:

ELA/Literacy –

RI.3.1 Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-LS3-1),(3-LS3-2),(3-LS4-2)

RI.3.2 Determine the main idea of a text; recount the key details and explain how they support the main idea. (3-LS3-1),(3-LS3-2),(3-LS4-2)

RI.3.3 Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/ effect. (3-LS3-1),(3-LS3-2),(3-LS4-2)

RI.3.7 Use information gained from illustrations (e.g., maps, photographs) and the words in a text to demonstrate understanding of the text (e.g., where, when, why, and how key events occur). (3-LS3-1)

W.3.2 Write informative/explanatory texts to examine a topic or convey ideas and information clearly. (3-LS3-1),(3-LS3-2),(3-LS4-2)

SL.3.4 Report on a topic or tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. (3-LS3-1),(3-LS3-2),(3-LS4-2)

SL.3.5 Create engaging audio recordings of stories or poems that demonstrate fluid reading at an understandable pace; add visual displays when appropriate to emphasize or enhance certain facts or details. (3-LS1-1)

Mathematics –

MP.2 Reason abstractly and quantitatively. (3-LS3-1),(3-LS3-2),(3-LS4-2)

MP.4 Model with mathematics. (3-LS1-1),(3-LS3-1),(3-LS3-2),(3-LS4-2)

3.NBT Number and Operations in Base Ten. (3-LS1-1)

3.NF Number and Operations—Fractions (3-LS1-1)

3.MD.B.3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step “how many more” and “how many less” problems using information presented in scaled bar graphs. (3-LS4-2)

3.MD.B.4 Generate measurement data by measuring lengths using rulers marked with halves and quarters of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters. (3-LS1-1),(3-LS3-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.


September 2017 ©2013 Achieve, Inc. All rights reserved.
3. Weather and Climate

Students who demonstrate understanding can:

**3-ESS2-1.** Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. [Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]

**3-ESS2-2.** Obtain and combine information to describe climates in different regions of the world.

**3-ESS3-1.** Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.* [Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.]

---

### Science and Engineering Practices

<table>
<thead>
<tr>
<th>Analyzing and Interpreting Data</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.</td>
<td><strong>ESS2.D:</strong> Weather and Climate</td>
</tr>
<tr>
<td>• Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships. (3-ESS2-1)</td>
<td>• Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. (3-ESS2-1)</td>
</tr>
<tr>
<td><strong>Engaging in Argument from Evidence</strong></td>
<td></td>
</tr>
<tr>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).</td>
<td>• Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years. (3-ESS2-2)</td>
</tr>
<tr>
<td>• Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-ESS3-1)</td>
<td><strong>ESS3.B:</strong> Natural Hazards</td>
</tr>
<tr>
<td><strong>Obtaining, Evaluating, and Communicating Information</strong></td>
<td>• A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (3-ESS3-1) (Note: This Disciplinary Core Idea is also addressed by 4-ESS3-2.)</td>
</tr>
<tr>
<td>Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit of ideas and methods.</td>
<td></td>
</tr>
<tr>
<td>• Obtain and combine information from books and other reliable media to explain phenomena. (3-ESS2-2)</td>
<td></td>
</tr>
</tbody>
</table>

### Disciplinary Core Ideas

**ESS2.D:** Weather and Climate

- Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. (3-ESS2-1)
- Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years. (3-ESS2-2)

**ESS3.B:** Natural Hazards

- A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (3-ESS3-1) (Note: This Disciplinary Core Idea is also addressed by 4-ESS3-2.)

### Crosscutting Concepts

<table>
<thead>
<tr>
<th>Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Patterns of change can be used to make predictions. (3-ESS2-1), (3-ESS2-2)</td>
</tr>
<tr>
<td><strong>Cause and Effect</strong></td>
</tr>
<tr>
<td>• Cause and effect relationships are routinely identified, tested, and used to explain change. (3-ESS3-1)</td>
</tr>
</tbody>
</table>

**Connections to Engineering, Technology, and Applications of Science**

- Engineers improve existing technologies or develop new ones to increase their benefits (e.g., better artificial limbs), decrease known risks (e.g., seatbelts in cars), and meet societal demands (e.g., cell phones). (3-ESS3-1)

**Connections to Nature of Science**

- Science is a Human Endeavor
  - Science affects everyday life. (3-ESS3-1)

---

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.
Fourth Grade

The performance expectations in fourth grade help students formulate answers to questions such as: “What are waves and what are some things they can do? How can water, ice, wind and vegetation change the land? What patterns of Earth’s features can be determined with the use of maps? How do internal and external structures support the survival, growth, behavior, and reproduction of plants and animals? What is energy and how is it related to motion? How is energy transferred? How can energy be used to solve a problem?” Fourth grade performance expectations include PS3, PS4, LS1, ESS1, ESS2, ESS3, and ETS1 Disciplinary Core Ideas from the NRC Framework. Students are able to use a model of waves to describe patterns of waves in terms of amplitude and wavelength, and that waves can cause objects to move. Students are expected to develop understanding of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. They apply their knowledge of natural Earth processes to generate and compare multiple solutions to reduce the impacts of such processes on humans. In order to describe patterns of Earth’s features, students analyze and interpret data from maps. Fourth graders are expected to develop an understanding that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. By developing a model, they describe that an object can be seen when light reflected from its surface enters the eye. Students are able to use evidence to construct an explanation of the relationship between the speed of an object and the energy of that object. Students are expected to develop an understanding that energy can be transferred from place to place by sound, light, heat, and electric currents or from object to object through collisions. They apply their understanding of energy to design, test, and refine a device that converts energy from one form to another. The crosscutting concepts of patterns; cause and effect; energy and matter; systems and system models; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are called out as organizing concepts for these disciplinary core ideas. In the fourth grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in asking questions, developing and using models, planning and carrying out investigations, analyzing and interpreting data, constructing explanations and designing solutions, engaging in argument from evidence, and obtaining, evaluating, and communicating information. Students are expected to use these practices to demonstrate understanding of the core ideas.
4.Energy

Students who demonstrate understanding can:

4-PS3.1. Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]

4-PS3.2. Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

4-PS3.3. Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

4-PS3.4. Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]

4-ESS3.1. Obtain and combine information to describe that energy and fuels are derived from natural resources and that their uses affect the environment. [Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; non-renewable energy resources are fossil fuels and fossil materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels.]
### 4.Waves: Waves and Information

**4-PS4-1. Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.**  
(Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.)  
[Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]

**4-PS4-3. Generate and compare multiple solutions that use patterns to transfer information.**  
(Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.)

---

### Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>PS4.A: Wave Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K-2). (4-PS4-1)</td>
</tr>
<tr>
<td>Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). (4-PS4-1)</td>
</tr>
</tbody>
</table>

**PS4.C: Information Technologies and Instrumentation**

- Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. (4-PS4-3)

**ETS1.C: Optimizing The Design Solution**

- Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)

### Science and Engineering Practices

- **Developing and Using Models**
  - Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.
    - Develop a model using an analogy, example, or abstract representation to describe a scientific principle. (4-PS4-1)
  - Constructing Explanations and Designing Solutions
    - Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.
    - Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-PS4-3)

### Crosscutting Concepts

- Patterns
  - Similarities and differences in patterns can be used to sort and classify natural phenomena. (4-PS4-1)
  - Similarities and differences in patterns can be used to sort and classify designed products. (4-PS4-3)

---

### Connections to Nature of Science

- Connections to other DCIs in fourth grade: 4-PS3.A (4-PS4-1); 4-PS3.B (4-PS4-1); 4-ETS1.A (4-PS4-3)
- Articulation of DCIs across grade-levels: K.ETS1.A (4-PS4-3); 1.PS4.C (4-PS4-3); 2.ETS1.B (4-PS4-3); 2.ETS1.C (4-PS4-3); 3.PS2.A (4-PS4-3); MS.PS4.A (4-PS4-1); MS.PS4.C (4-PS4-3); MS.PS1.B (4-PS4-3)
- ELA/Literacy:
  - RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-PS4-3)
  - RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-PS4-3)
  - SL.4.5 Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-PS4-1)
- Mathematics:
  - MP.4 Model with mathematics. (4-PS4-1)
  - 4.G.A.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-1)

---

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*

---

September 2017 ©2013 Achieve, Inc. All rights reserved.
4. Structure, Function, and Information Processing

Students who demonstrate understanding can:

4-PS4-2. Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. [Assessment Boundary: Assessment does not include knowledge of specific colors reflected and seen, the cellular mechanisms of vision, or how the retina works.]

4-LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]

4-LS1-2. Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways. [Clarification Statement: Emphasis is on systems of information transfer.] [Assessment Boundary: Assessment does not include the mechanisms by which the brain stores and recalls information or the mechanisms of how sensory receptors function.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

**Science and Engineering Practices**

<table>
<thead>
<tr>
<th>Developing and Using Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
</tr>
<tr>
<td>- Develop a model to describe phenomena. (4-PS4-2)</td>
</tr>
<tr>
<td>- Use a model to test interactions concerning the functioning of a natural system. (4-LS1-2)</td>
</tr>
</tbody>
</table>

**Engaging in Argument from Evidence**

| Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s). |
| - Construct an argument with evidence, data, and/or a model. (4-LS1-1) |

**Disciplinary Core Ideas**

<table>
<thead>
<tr>
<th>PS4.B: Electromagnetic Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- An object can be seen when light reflected from its surface enters the eyes. (4-PS4-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS1.A: Structure and Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. (4-LS1-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS1.D: Information Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal’s brain. Animals are able to use their perceptions and memories to guide their actions. (4-LS1-2)</td>
</tr>
</tbody>
</table>

**Crosscutting Concepts**

<table>
<thead>
<tr>
<th>Cause and Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Cause and effect relationships are routinely identified. (4-PS4-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems and System Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A system can be described in terms of its components and their interactions. (4-LS1-1), (4-LS1-2)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-level: N/A

Articulation of DCIs across grade-levels: 1.PS4.B (4-PS4-2); 1.LS1.A (4-LS1-1); 1.LS1.D (4-LS1-2); 3.LS3.B (4-LS1-1); MS.PS4.B (4-PS4-2); MS.LS1.A (4-LS1-1), (4-LS1-2); MS.LS1.D (4-PS4-2), (4-LS1-2)

Common Core State Standards Connections:

**ELA/Literacy -**

| W.4.1 | Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (4-LS1-1) |
| SL.4.5 | Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-PS4-2), (4-LS1-2) |
| **Mathematics -** | |
| MP.4 | Model with mathematics. (4-PS4-2) |
| 4.G.A.1 | Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-2) |
| 4.G.A.3 | Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded across the line into matching parts. Identify line-symmetric figures and draw lines of symmetry. (4-LS1-1) |

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.*


September 2017 ©2013 Achieve, Inc. All rights reserved.
Science and Engineering Practices

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test predictions requires building on K-2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

- Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Analyzing and Interpreting Data
Analyzing data in 3-5 builds on K-2 experiences and progresses to introduce more sophisticated approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

- Analyze and interpret data to make sense of phenomena using logical reasoning.

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 3-5 builds on K-2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Identify the evidence that supports an explanation.

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth
- Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed. (4-ESS1-1)

ESS2.A: Earth Materials and Systems
- Rainfall helps to shape the land and affects the types of things found there. Rainfall into water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. (4-ESS2-1)

ESS2.B: Plate Tectonics and Large-Scale System Interactions
- The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth. (4-ESS2-2)

ESS2.E: Biogeology
- Living things affect the physical characteristics of their regions. (4-ESS2-1)

ESS3.B: Natural Hazards
- A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (4-ESS3-2) [Note: This Disciplinary Core Idea can also be found in 3.WC]

ETS1.B: Designing Solutions to Engineering Problems
- Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS2-2)

Common Core State Standards Connections:

ELA/Literacy –
RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-ESS3-2)
RI.4.7 Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. (4-ESS2-2)
RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-ESS3-2)
W.4 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-ESS1-3,4-ESS2-1)
W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-ESS1-3,4-ESS2-1)
W.4.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-ESS1-3)

Mathematics –
MP.2 Reason abstractly and quantitatively. (4-ESS1-3,4-ESS2-1,4-ESS2-2)
MP.4 Model with mathematics. (4-ESS1-3,4-ESS2-1,4-ESS2-2)
MP.5 Use appropriate tools strategically. (4-ESS2-1)

4.MD.A.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. (4-ESS1-3,4-ESS2-1,4-ESS2-2)

4.MD.A.2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. (4-ESS2-1,4-ESS2-2)

4.OA.A.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. (4-ESS3-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences. September 2017 ©2013 Achieve, Inc. All rights reserved. 24 of 30
Fifth Grade

The performance expectations in fifth grade help students formulate answers to questions such as: “When matter changes, does its weight change? How much water can be found in different places on Earth? Can new substances be created by combining other substances? How does matter cycle through ecosystems? Where does the energy in food come from and what is it used for? How do lengths and directions of shadows or relative lengths of day and night change from day to day, and how does the appearance of some stars change in different seasons?”

Fifth grade performance expectations include PS1, PS2, PS3, LS1, LS2, ESS1, ESS2, and ESS3 Disciplinary Core Ideas from the NRC Framework. Students are able to describe that matter is made of particles too small to be seen through the development of a model. Students develop an understanding of the idea that regardless of the type of change that matter undergoes, the total weight of matter is conserved. Students determine whether the mixing of two or more substances results in new substances. Through the development of a model using an example, students are able to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. They describe and graph data to provide evidence about the distribution of water on Earth. Students develop an understanding of the idea that plants get the materials they need for growth chiefly from air and water. Using models, students can describe the movement of matter among plants, animals, decomposers, and the environment and that energy in animals’ food was once energy from the sun. Students are expected to develop an understanding of patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. The crosscutting concepts of patterns; cause and effect; scale, proportion, and quantity; energy and matter; and systems and systems models are called out as organizing concepts for these disciplinary core ideas. In the fifth grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in developing and using models, planning and carrying out investigations, analyzing and interpreting data, using mathematics and computational thinking, engaging in argument from evidence, and obtaining, evaluating, and communicating information; and to use these practices to demonstrate understanding of the core ideas.
5. Structure and Properties of Matter

Students who demonstrate understanding can:

5-PS1.1. Develop a model to describe that matter is made of particles too small to be seen.  [Clarification Statement: Examples of evidence supporting a model could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.]  [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]

5-PS1.2. Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.  [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.]  [Assessment Boundary: Assessment does not include distinguishing mass and weight.]

5-PS1.3. Make observations and measurements to identify materials based on their properties.  [Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.]  [Assessment Boundary: Assessment does not include density or distinguishing mass and weight.]

5-PS1.4. Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

The performance expectations above were developed using the following elements from A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop a model to describe phenomena. (5-PS1-1)

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

- Conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (5-PS1-4)
- Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. (5-PS1-3)

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical phenomena and using computational and mathematical tools to analyze data and compare alternative design solutions.

- Measure and graph quantities such as weight to address scientific and engineering questions and problems. (5-PS1-2)

Disciplinary Core Ideas


- Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. (5-PS1-1)
- The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. (5-PS1-2)
- Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5-PS1-3)

PS1.B: Chemical Reactions

- When two or more different substances are mixed, a new substance with different properties may be formed. (5-PS1-4)
- No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.) (5-PS1-2)

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships are routinely identified, tested, and used to explain change. (5-PS1-4)

Scale, Proportion, and Quantity

- Natural objects exist from the very small to the immensely large. (5-PS1-1)
- Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. (5-PS1-2), (5-PS1-3)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

- Science assumes consistent patterns in natural systems. (5-PS1-2)

Common Core State Standards Connections:

ELA/Literacy -

RI.5.7. Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-PS1-1)

W.5.7. Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (5-PS1-2), (5-PS1-3)

W.5.8. Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-PS1-2), (5-PS1-3)

W.5.9. Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-PS1-2), (5-PS1-3)

Mathematics -

MP.2. Reason abstractly and quantitatively. (5-PS1-1), (5-PS1-2), (5-PS1-3)

MP.4. Model with mathematics. (5-PS1-1), (5-PS1-2), (5-PS1-3)

MP.5. Use appropriate tools strategically. (5-PS1-2), (5-PS1-3)

5.NBT.A.1. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. (5-PS1-1)

5.NF.B.7. Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (5-PS1-1)

5.MD.A.1. Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems. (5-PS1-2)

5.MD.C.3. Recognize volume as an attribute of solid figures and understand concepts of volume measurement. (5-PS1-1)

5.MD.C.4. Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. (5-PS1-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.
## 5. Matter and Energy in Organisms and Ecosystems

### Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>PS3.D: Energy in Chemical Processes and Everyday Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). (5-PS3-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)</td>
</tr>
<tr>
<td>Plants acquire their material for growth chiefly from air and water. (5-LS1-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS2.A: Interdependent Relationships in Ecosystems</th>
</tr>
</thead>
<tbody>
<tr>
<td>The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as &quot;decomposers.&quot; Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. (5-LS2-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LS2.B: Cycles of Matter and Energy Transfer in Ecosystems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (5-LS2-1)</td>
</tr>
</tbody>
</table>

### Science and Engineering Practices

<table>
<thead>
<tr>
<th>Developing and Using Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
</tr>
<tr>
<td>Use models to describe phenomena. (5-PS3-1)</td>
</tr>
<tr>
<td>Develop a model to describe phenomena. (5-LS2-1)</td>
</tr>
</tbody>
</table>

Engaging in Argument from Evidence

| Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s). |
| Support an argument with evidence, data, or a model. (5-LS1-1) |

### Crosscutting Concepts

<table>
<thead>
<tr>
<th>Systems and Model Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>A system can be described in terms of its components and their interactions. (5-LS2-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy and Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter is transported into, out of, and within systems. (5-LS1-1)</td>
</tr>
<tr>
<td>Energy can be transferred in various ways and between objects. (5-PS3-1)</td>
</tr>
</tbody>
</table>

### Common Core State Standards Connections:

**PS1.A** (5-LS1-1); **PS1.B** (5-LS2-1); **PS3.A** (5-PS3-1); **PS3.B** (5-PS3-1); **PS3.C** (5-PS3-1); **SL.5** (5-LS1-1); **SL.6** (5-LS2-1); **W.1** (5-LS1-1); **W.9** (5-LS1-1); **W.10** (5-LS2-1); **MP.2** (5-LS1-1); **MP.3** (5-LS2-1); **MP.5** (5-LS1-1); **MD.1** (5-LS1-1); **MD.1** (5-LS1-1)

**Articulation of DCIs across grade-levels:**

- **K.LS1.C** (5-PS3-1), (5-LS1-1); **2.LS1.A** (5-LS2-1); **2.LS2.A** (5-PS3-1), (5-LS1-1); **2.LS4.D** (5-LS2-1); **4.PS3.A** (5-PS3-1); **4.PS3.B** (5-PS3-1); **4.ESS2.E** (5-LS1-1); **5.PS3.D** (5-PS3-1), (5-LS1-1); **5.MS.PS4.B** (5-LS1-1); **5.MS.LS1.C** (5-LS1-1), (5-LS1-1), (5-LS1-1); **5.MS.LS2.A** (5-LS2-1); **5.MS.LS2.B** (5-LS1-1), (5-LS1-1), (5-LS1-1), (5-LS1-1)

**ELA/Literacy –**

- **R5.1** (5-LS1-1) Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-LS1-1) |
- **R5.7** (5-LS2-1) Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-PS3-1), (5-LS2-1) |
- **R5.9** (5-LS1-1) Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-LS1-1) |
- **W5.1** (5-LS1-1) Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-LS1-1) |
- **SL5.5** (5-LS2-1) Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-PS3-1), (5-LS2-1) |

**Mathematics –**

- **MP.2** (5-LS1-1) Reason abstractly and quantitatively. (5-LS1-1), (5-LS1-1) |
- **MP.4** (5-LS2-1) Model with mathematics. (5-LS1-1), (5-LS1-1) |
- **MP.5** (5-LS1-1) Use appropriate tools strategically. (5-LS1-1) |
- **MD.1** (5-LS1-1) Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. (5-LS1-1) |

---

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*

September 2017 ©2013 Achieve, Inc. All rights reserved.
## 5. Earth’s Systems

**Science and Engineering Practices**

<table>
<thead>
<tr>
<th>Developing and Using Models</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions. | **ESS2.A:** Earth Materials and Systems  
- Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather. (5-ESS2-1)  
**ESS2.C:** The Roles of Water in Earth’s Surface Processes  
- Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. (5-ESS2-2)  
**ESS3.C:** Human Impacts on Earth Systems  
- Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments. (5-ESS3-1) | **Scale, Proportion, and Quantity**  
- Standard units are used to measure and describe physical quantities such as weight, and volume. (5-ESS2-2)  
**Systems and System Models**  
- A system can be described in terms of its components and their interactions. (5-ESS2-1), (5-ESS3-1)  
---  
**Connections to Nature of Science**  
**Science Addresses Questions about the Natural and Material World**  
- Science findings are limited to questions that can be answered with empirical evidence. (5-ESS3-1) |

| Obtaining, Evaluating, and Communicating Information | **RI.1.5.** Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-ESS3-1)  
**RI.1.7.** Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS2-1), (5-ESS2-2), (5-ESS3-1)  
**RI.1.9.** Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-ESS3-1)  
**W.8.5.** Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-ESS2-1), (5-ESS3-1)  
**W.8.9.** Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-ESS3-1)  
**SL.5.5.** Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS2-1), (5-ESS2-2)  
**Mathematics** | **MP.2.** Reason abstractly and quantitatively. (5-ESS2-1), (5-ESS2-2), (5-ESS3-1)  
**MP.4.** Model with mathematics. (5-ESS2-1), (5-ESS2-2), (5-ESS3-1)  
**S.G.2.** Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. (5-ESS2-1) |

---

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.*

September 2017 ©2013 Achieve, Inc. All rights reserved.
5.Space Systems: Stars and the Solar System

5.PS2-1. **Support an argument that the gravitational force exerted by Earth on objects is directed down.** [Clarification Statement: “Down” is a local description of the direction that points toward the center of the spherical Earth.] [Assessment Boundary: Assessment does not include mathematical representation of gravitational force.]

5.ESS1-1. **Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth.** [Assessment Boundary: Assessment is limited to relative distances, not sizes, of stars. Assessment does not include other factors that affect apparent brightness (such as stellar masses, age, stage).]

5.ESS1-2. **Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.** [Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.] [Assessment Boundary: Assessment does not include causes of seasons.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Analyzing and Interpreting Data</strong></td>
<td><strong>PS2.B: Types of Interactions</strong>&lt;br&gt;A: The gravitational force of Earth acting on an object near Earth's surface pulls that object toward the planet's center. (5-PS2-1)&lt;br&gt;B: The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth. (5-ESS1-1)&lt;br&gt;C: The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year. (5-ESS1-2)</td>
<td><strong>Patterns</strong>&lt;br&gt;- Similarities and differences in patterns can be used to sort, classify, communicate and analyze simple rates of change for natural phenomena. (5-ESS1-2)&lt;br&gt;- Cause and Effect&lt;br&gt;- Cause and effect relationships are routinely identified and used to explain change. (5-PS2-1)&lt;br&gt;- Scale, Proportion, and Quantity&lt;br&gt;- Natural objects exist from the very small to the immensely large. (5-ESS1-1)</td>
</tr>
</tbody>
</table>
| **Engaging in Argument from Evidence** | **ESS1.A: The Universe and its Stars**<br>A: The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth. (5-ESS1-1) | **Common Core State Standards Connections:**
<table>
<thead>
<tr>
<th><strong>ELA/Literacy</strong></th>
<th><strong>Mathematics</strong></th>
<th><strong>Connecting other DCIs in grade five:</strong> N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI.5.1</td>
<td>Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-PS2-1),(5-ESS1-1)</td>
<td><strong>MP.2</strong></td>
</tr>
<tr>
<td>RI.5.7</td>
<td>Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS1-1)</td>
<td><strong>MP.4</strong></td>
</tr>
<tr>
<td>RI.5.8</td>
<td>Explain how an author uses reasons and evidence to support particular points in a text, identifying which reasons and evidence support which point(s). (5-ESS1-1)</td>
<td><strong>5.NBT.A.2</strong></td>
</tr>
<tr>
<td>RI.5.9</td>
<td>Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-PS2-1),(5-ESS1-1)</td>
<td><strong>5.G.A.2</strong></td>
</tr>
<tr>
<td>W.5.1</td>
<td>Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-PS2-1),(5-ESS1-1)</td>
<td></td>
</tr>
<tr>
<td>SL.5.5</td>
<td>Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS1-1)</td>
<td></td>
</tr>
</tbody>
</table>

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

3-5. Engineering Design

Students who demonstrate understanding can:

**3-5-ETS1-1.** Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

**3-5-ETS1-2.** Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

**3-5-ETS1-3.** Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

**Science and Engineering Practices**

- **Science Practice:** Asking Questions and Defining Problems
- **Engineering Practice:** Planning and Carrying Out Investigations
- **Engineering Practice:** Constructing Explanations and Designing Solutions

**Disciplinary Core Ideas**

- **ETS1A: Defining and Delimiting Engineering Problems**
  - Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (3-5-ETS1-1)

- **ETS1B: Developing Possible Solutions**
  - Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-5-ETS1-2)
  - At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-5-ETS1-2)
  - Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-5-ETS1-3)

- **ETS1C: Optimizing the Design Solution**
  - Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-5-ETS1-3)

**Crosscutting Concepts**

- **Influence of Science, Engineering, and Technology on Society and the Natural World**
  - People’s needs and wants change over time, as do their demands for new and improved technologies. (3-5-ETS1-1)
  - Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. (3-5-ETS1-2)

**Connections to 3-5-ETS1A: Defining and Delimiting Engineering Problems include:**

- **Fourth Grade:** 4-PS3-4

**Connections to 3-5-ETS1B: Designing Solutions to Engineering Problems include:**

- **Fourth Grade:** 4-ESS3-2

**Connections to 3-5-ETS1C: Optimizing the Design Solution include:**

- **Fourth Grade:** 4-PS4-3

Articulation of DCIs across grade-bands:

- **K-2.ETS1A** (3-5-ETS1-1),(3-5-ETS1-2),(3-5-ETS1-3)
- **K-2.ETS1B** (3-5-ETS1-2)
- **K-2.ETS1C** (3-5-ETS1-2),(3-5-ETS1-3)
- **MS.ETS1A** (3-5-ETS1-1)
- **MS.ETS1B** (3-5-ETS1-1),(3-5-ETS1-2),(3-5-ETS1-3)
- **MS.ETS1C** (3-5-ETS1-2),(3-5-ETS1-3)

Common Core State Standards Connections:

**ELA/Literacy**

- **RI.1.5** Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (3-5-ETS1-2)
- **RI.1.7** Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (3-5-ETS1-2)
- **RI.5.9** Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeable. (3-5-ETS1-2)
- **W.5.7** Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (3-5-ETS1-3)
- **W.5.8** Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (3-5-ETS1-3)
- **W.5.9** Draw evidence from literary or informational texts to support analysis, reflection, and research. (3-5-ETS1-1),(3-5-ETS1-3)

**Mathematics**

- **MP.2** Reason abstractly and quantitatively. (3-5-ETS1-1),(3-5-ETS1-2),(3-5-ETS1-3)
- **MP.4** Model with mathematics. (3-5-ETS1-1),(3-5-ETS1-2),(3-5-ETS1-3)
- **MP.5** Use appropriate tools strategically. (3-5-ETS1-1),(3-5-ETS1-2),(3-5-ETS1-3)
- **3-5.OA** Operations and Algebraic Thinking (3-5-ETS1-1),(3-5-ETS1-2)