MS.History of Earth

Students who demonstrate understanding can:

MS-ESS1-4. Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.

[Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth’s history. Examples of Earth’s major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: A assessment does not include recalling the names of specific periods or epochs and events within them.]

MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface over time and spatial scales.

[Clarification Statement: Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]

MS-ESS2-3. Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

[Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).]

[Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

Science and Engineering Practices

Analyzing and Interpreting Data
A data analysis is 6-8 builds on K-5 and progresses to extend quantitative analysis to inv estigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- Analyze and interpret data to provide evidence for phenomena. (MS-ESS2-3)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 6-8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

- Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-ESS1-4)(MS-ESS2-2)

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth

- The geologic time scale interpreted from rock strata provides a way to organize Earth’s history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale. (MS-ESS1-4)
- Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C.GGE) (secondary to MS-ESS2-3)

ESS2.A: Earth’s Materials and Systems

- The planet’s systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth’s history and will determine its future. (MS-ESS2-2)

ESS2.B: Plate Tectonics and Large-Scale System Interactions

- Maps of ancient land and water patterns, based on inv estigations of rocks and fossils, make clear how Earth’s plate have moved great distances, collided, and spread apart. (MS-ESS2-3)

ESS2.C: The Roles of Water in Earth’s Surface Processes

- Water’s movement—both on the land and underground—cause weathering and erosion, which change the land’s surface features and create underground formations. (MS-ESS2-2)

Crosscutting Concepts

Patterns

- Patterns in rates of change and other numerical relationships can provide information about natural systems. (HS-ESS2-3)

Scale, Proportion and Quantity

- Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-ESS1-4), (MS-ESS2-2)

Connections to Other Disciplines

Connections to Nature of Science

Scientific knowledge is open to revision in Light of New Evidence

- Science findings are frequently revised and/or reinterpreted based on new evidence. (MS-ESS2-3)

Connections to Other Disciplines

- A collection of DCIs across grade-bands:
 - MS.PS1.B (MS-ESS2-2); MS.PS1.B (MS-ESS2-2); MS.PS1.A (MS-ESS1-4); MS.PS1.B; MS.PS1.C (MS-ESS1-4)
 - MS.LS4.A (ESS1-4); MS.LS3.D (ESS1-4); MS.LS4.B (ESS1-4)
 - 1.LSA.4 (ESS1-4); LS.LSA.4 (ESS1-4); MS.LS1.B (ESS1-3); 1.LSA.1B (ESS1-3); 4.ESS1.C (ESS1-4); MS.LS2.B (ESS1-2); MS.LS2.D (ESS1-2);
 - MS.LS3.D (ESS1-4); MS.LS3.B (ESS1-4); MS.LS3.C (ESS1-4); MS.LS3.D (ESS1-2); MS.LS3.E (ESS1-2); MS.LS3.F (ESS1-2); MS.LS4.B (ESS1-2); MS.LS4.C (ESS1-2); MS.LS4.D (ESS1-2);
 - MS.LS4.E (ESS1-2); MS.LS4.F (ESS1-2); MS.LS4.G (ESS1-2);

Common Core State Standards Connections

ELA/Literacy

- **RST.6-8.1** Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS1-4),(MS-ESS2-2),(MS-ESS2-3)
- **RST.6-8.7** Integrate quantitative or technical information expressed in words a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ESS2-3)

RST.6-8.9 Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ESS2-3)

WHST.6-8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-ESS1-4),(MS-ESS2-2)

SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ESS2-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (MS-ESS2-2),(MS-ESS2-3)

6.EE.B.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS1-4),(MS-ESS2-2),(MS-ESS2-3)

7.EE.B.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS1-4),(MS-ESS2-2),(MS-ESS2-3)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

April 2014 ©2013 Achieve, Inc. All rights reserved.