MS-PS4-1 Waves and Their Applications in Technologies for Information Transfer

Students who demonstrate understanding can:

MS-PS4-1. Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. [Clarification Statement: Emphasis is on describing waves with both qualitative and quantitative thinking.] [Assessment Boundary: Assessment does not include electromagnetic waves and is limited to standard repeating waves.]

The performance expectation above was developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

Science and Engineering Practices

Using Mathematics and Computational Thinking
Mathematical and computational thinking at the 6–8 level builds on K–5 and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.
- Use mathematical representations to describe and/or support scientific conclusions and design solutions.

Disciplinary Core Ideas

PS4.A: Wave Properties
- A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude.

Crosscutting Concepts

Patterns
- Graphs and charts can be used to identify patterns in data.

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence
- Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Observable features of the student performance by the end of the course:

<table>
<thead>
<tr>
<th>1 Representation</th>
<th>2 Mathematical modeling</th>
<th>3 Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Students identify the characteristics of a simple mathematical wave model of a phenomenon, including:</td>
<td>a Students apply the simple mathematical wave model to a physical system or phenomenon to identify how the wave model characteristics correspond with physical observations (e.g., frequency corresponds to sound pitch, amplitude corresponds to sound volume).</td>
<td>a Given data about a repeating physical phenomenon that can be represented as a wave, and amounts of energy present or transmitted, students use their simple mathematical wave models to identify patterns, including:</td>
</tr>
<tr>
<td>i. Waves represent repeating quantities.</td>
<td></td>
<td>i. That the energy of the wave is proportional to the square of the amplitude (e.g., if the height of a water wave is doubled, each wave will have four times the energy).</td>
</tr>
<tr>
<td>ii. Frequency, as the number of times the pattern repeats in a given amount of time (e.g., beats per second).</td>
<td></td>
<td>ii. That the amount of energy transferred by waves in a given time is proportional to frequency (e.g., if twice as many water waves hit the shore each minute, then twice as much energy will be transferred to the shore).</td>
</tr>
<tr>
<td>iii. Amplitude, as the maximum extent of the repeating quantity from equilibrium (e.g., height or depth of a water wave from average sea level).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>