2-PS1 Matter and its Interactions

Students who demonstrate understanding can:

2-PS1.1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]

2-PS1.2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. [Clarification Statement: Examples of properties could include, strength, flexibility, hardness, texture, and absorbency. [Assessment Boundary: Assessment of quantitative measurements is limited to length.]

2-PS1.3. Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. [Clarification Statement: Examples of pieces could include blocks, building bricks, or other assorted small objects.]

2-PS1.4. Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. [Clarification Statement: Examples of reversible changes could include materials such as water and butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and heating paper.]

Science and Engineering Practices

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
 - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

Analyzing and Interpreting Data
- Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
 - Analyze data from tests of an object or tool to determine if it works as intended. (2-PS1-2)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
 - Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (2-PS1-3)

Engaging in Argument from Evidence
- Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).
 - Construct an argument with evidence to support a claim. (2-PS1-4)

Disciplinary Core Ideas

PS1A: Structure and Properties of Matter
- Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)
- Different properties are suited to different purposes. (2-PS1-2),(2-PS1-3)
- A great variety of objects can be built up from a small set of pieces. (2-PS1-3)

PS1B: Chemical Reactions
- Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not. (2-PS1-4)

Crosscutting Concepts

Patterns
- Patterns in the natural and human designed world can be observed. (2-PS1-1)

Cause and Effect
- Events have causes that generate observable patterns. (2-PS1-4)
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (2-PS1-2)

Energy and Matter
- Objects may break into smaller pieces and be put together into larger pieces, or change shapes. (2-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World
- Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world. (2-PS1-2)

Articulation of DCIs across grade levels:

- **4.ESS2.A** (2-PS1-3); **5.PS1A** (2-PS1-1),(2-PS1-2),(2-PS1-3); **5.PS1.B** (2-PS1-4); **5.LS2.A** (2-PS1-3)

Connections to other DCIs in second grade: N/A

ELA/Literacy –

RI.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-PS1-4)

RI.2.2 Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-PS1-4)

RI.2.8 Write opinion pieces in which they introduce the topic or book they are writing about, state an opinion, supply reasons that support the opinion, use linking words (e.g., because, and, also) to connect opinion and reasons, and provide a concluding statement or section. (2-PS1-4)

W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-PS1-1),(2-PS1-2),(2-PS1-3)

W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1),(2-PS1-2),(2-PS1-3)

Mathematics –

MP.2 Reason abstractly and quantitatively. (2-PS1-2)

MP.4 Model with mathematics. (2-PS1-1),(2-PS1-2)

MP.5 Use appropriate tools strategically. (2-PS1-2)

2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1),(2-PS1-2)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.