3-PS2 Motion and Stability: Forces and Interactions

3-PS2-4. Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]

Science and Engineering Practices

Asking Questions and Defining Problems
- Asking questions and defining problems in grades K–2 builds on experiences and progresses to specifying qualitative relationships.
- Ask questions that can be investigated based on patterns such as cause and effect relationships. (3-PS2-3)
- Define a simple problem that can be solved through development of a new or improved object or tool. (3-PS2-4)

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in grades K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
- Plan and conduct an investigation collaboratively to produce data as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-PS2-1)
- Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or a design solution. (3-PS2-2)

Disciplinary Core Ideas

PS2.A: Forces and Motion
- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) (3-PS2-1)
- The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.) (3-PS2-2)

PS2.B: Types of Interactions
- Objects in contact exert forces on each other. (3-PS2-1)
- Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other. (3-PS2-3) (3-PS2-4)

Crosscutting Concepts

Patterns
- Patterns of change can be used to make predictions. (3-PS2-2)

Cause and Effect
- Cause and effect relationships are routinely identified. (3-PS2-1)

Connections to Engineering, Technology, and Applications of Science
- Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the engineering design process. (3-PS2-4)

Connections to Other Disciplines in Third Grade: N/A

Articulation of DCIs across grade-levels: K-PS2.A (3-PS2-1); K-PS2.B (3-PS2-1); K-PS3.C (3-PS2-1); K.ETS1.A (3-PS2-4); 1-ESS1.A (3-PS2-3); 4-PS4.A (3-PS2-2); 4.ETS1.A (3-PS2-4); 5-PS2.B (3-PS2-1); MS-PS2.A (3-PS2-1); MS-PS2.B (3-PS2-3); MS-ESS1.B (3-PS2-2); MS-ESS2.C (3-PS2-1)

Common Core State Standards Connections:

ELA/Literacy –
- **RI.3.1** Ask and answer questions of text to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-PS2-1) (3-PS2-3)
- **RI.3.3** Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-PS2-3)
- **RI.3.8** Describe the logical connection between particular sentences and paragraphs in a text (e.g., comparison, cause/effect, first/second/third in a sequence). (3-PS2-3)
- **W.3.7** Conduct short research projects that build knowledge about a topic. (3-PS2-1) (3-PS2-2)
- **W.3.8** Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-PS2-1) (3-PS2-2)
- **SL.3.3** Ask and answer questions about information from a speaker, offering appropriate elaboration and detail. (3-PS2-3)

Mathematics –
- **MP.2** Reason abstractly and quantitatively. (3-PS2-1)
- **MP.5** Use appropriate tools strategically. (3-PS2-1)
- **3.MDA.2** Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (3-PS2-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.