Construct a scientific explanation based on valid and within a natural system, the transfer of energy. Plants, algae (including phytoplankton), and many all living things are made up of cells, which is the complex and microscopic structures and systems can. Phenomena that can be observed at one scale may in multicellular organisms, the body is a system of matter is conserved because atoms are conserved in phenomena may have more than one cause, and in large ponds than they do in small ponds. Assessment does not include the biochemical function of cells or cell parts.

Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. Phenomena that can be observed at one scale may be unobservable at another scale. Examples could include the interaction of subsystems within a system and the normal functioning of those systems. Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of environmental factors could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds. Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. Assessment is on tracing movement of matter and flow of energy. Assessment does not include the biochemical mechanisms of photosynthesis.

Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. Describing molecules that are broken apart and put back together and that in this process, energy is released. Assessment does not include details of the chemical reactions for photosynthesis or respiration.

Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. Assessment does not include mechanisms for the transmission of this information.

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

- **Science and Engineering Practices**
 - Developing and Using Models: Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
 - Planning and Carrying Out Investigations: Planning and carrying out investigations in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions.
 - Constructing Explanations and Designing Solutions: Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.
- **Disciplinary Core Ideas**
 - LS1.A: Structure and Function
 - All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).
 - Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell.
 - In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.
 - LS1.B: Growth and Development of Organisms
 - Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.
 - Genetic factors as well as local conditions affect the growth of the adult plant.
 - Plants, algae (including phytoplankton), and many microorganisms use the energy from light to make sugars (food) from carbon dioxide from the atmosphere and water through the process of photosynthesis, which also releases oxygen. These sugars can be used immediately or stored for growth or later use.

- **Crosscutting Concepts**
 - Cause and Effect
 - Cause and effect relationships may be used to predict phenomena in natural systems. Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability.
 - Scale, Proportion, and Quantity
 - Phenomena that are observable at one scale may not be observable at another scale.
 - Energy and Matter
 - Matter is conserved because atoms are conserved in physical and chemical processes.
 - Within a natural system, the transfer of energy drives the motion and/or cycling of matter.
 - Structure and Function
 - Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

April 2014 ©2013 Achieve, Inc. All rights reserved.
MS-LS1 From Molecules to Organisms: Structures and Processes

- **Within individual organisms, food moves through a series of chemical reactions in which it is broken down and rearranged to form new molecules, to support growth, or to release energy.** (MS-LS1-7)

 LS1.D: Information Processing
 - Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories. (MS-LS1-8)

 PS3.D: Energy in Chemical Processes and Everyday Life
 - The chemical reaction by which plants produce complex food molecules (sugars) requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic molecules and release oxygen. (secondary to MS-LS1-6)
 - Cellular respiration in plants and animals involves chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials. (secondary to MS-LS1-7)

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence
- Science knowledge is based upon logical connections between evidence and explanations. (MS-LS1-6)

Interdependence of Science, Engineering, and Technology
- Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. (MS-LS1-1)

Connections to Other Disciplines

Articulation to DCIs across grade-bands:
- **MS.PS1.B (MS-LS1-6), (MS-LS1-7); MS.LS2.A (MS-LS1-4), (MS-LS1-5); MS.LS3.A (MS-LS1-2); MS.ESS2.A (MS-LS1-6)

Common Core State Standards Connections:

ELA/Literacy
- **RST.6-8.1** Cite specific textual evidence to support analysis of science and technical texts. (MS-LS1-3), (MS-LS1-4), (MS-LS1-5), (MS-LS1-6)
- **RST.6-8.2** Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-5), (MS-LS1-6)
- **RST.6.8** Trace and evaluate the argument and specific claims in a text, distinguishing arguments that are supported by reasons and evidence from claims that are not. (MS-LS1-3), (MS-LS1-4)

WHST.6-8.1 Write arguments focused on discipline content. (MS-LS1-3), (MS-LS1-4)

WHST.6-8.2 Write informative/explanatory texts to examine a topic or convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-5), (MS-LS1-6)

WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-LS1-1)

WHST.6-8.8 Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-LS1-8)

WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS1-5), (MS-LS1-6)

SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-LS1-2), (MS-LS1-7)

Mathematics
- **6.EE.C.9** Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. (MS-LS1-1), (MS-LS1-2), (MS-LS1-3), (MS-LS1-6)

6.SP.A.2 Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. (MS-LS1-4), (MS-LS1-5)

6.SP.B.4 Summarize numerical data sets in relation to their context. (MS-LS1-4), (MS-LS1-5)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

April 2014 ©2013 Achieve, Inc. All rights reserved.