1 Feedback Wanted: NGSS Primary Evaluation of Essential Criteria for Alignment (PEEC-Alignment)

The first draft of the NGSS Primary Evaluation of Essential Criteria for Alignment (PEEC-Alignment) is ready for public review. PEEC-Alignment will help developers and reviewers of instructional materials answer the question "do the materials contain or exhibit the essential features of a program aligned to the NGSS innovations?" Educators, Administrators, Publishers, and Curriculum Materials Developers are all encouraged to review and provide feedback on this draft of the NGSS PEEC-Alignment by visiting this page by July 1, 2015. After that time, the document will be revised based on the feedback received.
State Collaboration Brief

Interested in learning more about how two states are working together to examine and transition their instructional materials to align to the NGSS? Check out this three-page brief that details the goals, process, and lessons learned from the work underway with the Rhode Island/Delaware Collaborative.

Standard of the Month

2-LS2-1: Plan and conduct an investigation to determine if plants need sunlight and water to grow. For a more in-depth look at this NGSS performance expectation and to search for others read more here. Need more context? See where these ideas are introduced in *A Framework for K-12 Science Education* (page 150).

Question of the Month

Q: How do the science and engineering practices progress over a student's academic career? How do I know what my first grader is expected to do for each practice?

A: The science and engineering practices become more sophisticated for students over time. For example, for a first grader, analyzing and interpreting data (an NGSS practice) might involve the student comparing their prediction (based on prior experiences) to what they actually observed. For a fifth grader, analyzing and interpreting data might involve the student comparing and contrasting data collected by different student groups in order to discuss similarities and differences in their findings. To find out how all eight of the science and engineering practices progress over time, you might look at *Appendix F - Science and Engineering Practices*, which summarizes what students should be able to do by the end of each grade band for each practice.
Crosscutting concepts can be a great tool for students to use when they encounter new phenomena or a new problem to solve. Starting to incorporate explicit use of crosscutting concepts in instruction? Check out the different goals for each crosscutting concept in each grade band in the NGSS: Appendix G - Crosscutting Concepts.

Images picked up by NASA's MAVEN spacecraft revealed that the auroras (more commonly known as Northern Lights on Earth) which occur on Mars are red and green.

The disciplinary core ideas (DCIs) included in the Framework and the NGSS are the big concepts in science that all students need to learn. They are intended to arm students with scientific knowledge they can use to understand the world around them. The power of the DCIs lies not in their ability to allow students to recall the specific vocabulary used in science, but rather, in their ability to allow students to explain phenomena they observe and investigate through science. To learn more about the Framework's criteria for DCIs, check out the overview starting at the bottom of this page and to see a summary of how DCIs progress.
across the grade bands, look at Appendix E - Disciplinary Core Idea Progressions. To see the full text of each DCI in context, see Chapters 5, 6, 7, and 8 of the Framework (e.g., PS1.A)