HS.Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. [Clarification Statement: Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate and competition. Examples of mathematical comparisons could include graphs, charts, histograms, and population changes gathered from simulations or historical data sets.] [Assessment Boundary: Assessment does not include development of mathematical equations to make comparisons.]

HS-LS2-2. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. [Clarification Statement: Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.] [Assessment Boundary: Assessment is limited to provided data.]

HS-LS2-6. Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. [Clarification Statement: Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption or sea level rise.]

HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.* [Clarification Statement: Examples of human activities can include urbanization, building dams, and dissemination of invasive species.]

HS-LS2-8. Evaluate evidence for the role of group behavior on individual and species' chances to survive and reproduce. [Clarification Statement: Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.]

HS-LS4-6. Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.* [Clarification Statement: Emphasis is on testing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]

Science and Engineering Practices

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Use mathematical and/or computational representations of phenomena or design solutions to support explanations. (HS-LS2-1)
- Use mathematical representations of phenomena or design solutions to support and revise explanations. (HS-LS2-2)
- Create or revise a simulation of a phenomenon, designed device, process, or system. (HS-LS4-6)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

- Design, evaluate, and refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-LS2-7)

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds from K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.

- Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS2-6)
- Evaluate the evidence behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS2-8)

Disciplinary Core Ideas

LS2:A: Interdependent Relationships in Ecosystems

- Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. These limits result from such factors as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease. Organisms would have the capacity to produce populations of great size were it not for the fact that environments and resources are finite. This fundamental tension affects the abundance (number of individuals) of species in any given ecosystem. (HS-LS2-1)
- Use mathematical and/or computational representations to support explanations of factors that affect ecosystem and threaten the survival of some species. (HS-LS2-2)

LS2:C: Ecosystem Dynamics, Functioning, and Resilience

- A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or physical disturbance to an ecosystem occurs, it may return to its more or less original status (i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosystems in terms of resources and habitat availability. (HS-LS2-2)
- Moreover, anthropogenic changes (induced by human activity) in the environment—including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change—can disrupt an ecosystem and threaten the survival of some species. (HS-LS2-7)

LS2:D: Social Interactions and Group Behavior

- Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives. (HS-LS2-8)

LS4:C: Adaptation

- Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline—and sometimes the extinction—of some species. (HS-LS4-6)

LS4:D: Biodiversity and Humans

- Biodiversity is increased by the formation of new species (speciation) and decreased by the loss of species (extinction). (secondary to HS-LS2-7)
- Humans depend on the living world for the resources and other benefits provided by biodiversity. But human

Connections to Nature of Science

Scientific Knowledge is Open to Revision in Light of New Evidence

- Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence. (HS-LS2-2)
- Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education.

May 2013 ©2013 Achieve, Inc. All rights reserved.
When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value.

ETS1.B: Developing Possible Solutions

- When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-LS2-7)

- Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (secondary to HS-LS4-6)

Connections to other DCIs in this grade-band:

HS.ESS2.D	(HS-LS2-7), (HS-LS4-6); HS.ESS2.E	(HS-LS2-7), (HS-LS2-6), (HS-LS2-7), (HS-LS4-6);	HS.ESS3.A	(HS-LS2-7), (HS-LS2-7), (HS-LS4-6);
MS.ESS2.E	(HS-LS2-7), (HS-LS2-7), (HS-LS4-6);	HS.ESS3.D	(HS-LS2-6), (HS-LS4-6);	
MS.ESS2.F	(HS-LS2-6); MS.ESS3.A	(HS-LS2-1), (HS-LS2-6);	MS.ESS3.C	(HS-LS2-1), (HS-LS2-6), (HS-LS2-7), (HS-LS4-6);
MS.ESS3.D	(HS-LS2-7)			

Articulation across grade bands:

MS.LS1.B	(HS-LS2-6); MS.LS2.A	(HS-LS2-1), (HS-LS2-6);	MS.LS2.C	(HS-LS2-7), (HS-LS2-7), (HS-LS4-6);
LS2	(HS-LS2-1), (HS-LS2-6);	MS.LS2.D	(HS-LS2-7), (HS-LS2-7), (HS-LS4-6);	
HS.ESS2.A	(HS-LS2-7), (HS-LS2-7), (HS-LS4-6);			
HS.ESS2.B	(HS-LS2-7)			

Common Core State Standards Connections:

ELA/Literacy –

RST.9-10.8	Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. (HS-LS2-6), (HS-LS2-7), (HS-LS2-8)
RST.11-12.1	Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS2-1), (HS-LS2-2), (HS-LS2-6), (HS-LS2-8)
RST.11-12.7	Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-LS2-6), (HS-LS2-7), (HS-LS4-6)
RST.11-12.8	Evaluate the hypotheses, data, analysis, and conclusions in a scientific or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-LS2-6), (HS-LS2-7), (HS-LS2-8)
WHST.9-12.2	Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-LS2-1), (HS-LS2-2)
WHST.9-12.5	Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on what is most significant for a specific purpose and audience. (HS-LS2-6)
WHST.9-12.7	Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS2-7), (HS-LS4-6)

Mathematics –

MP.2	Reason abstractly and quantitatively. (HS-LS2-1), (HS-LS2-2), (HS-LS2-6), (HS-LS2-7)
MP.4	Model with mathematics. (HS-LS2-1), (HS-LS2-2)
HSN-Q.1.A	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-LS2-1), (HS-LS2-2), (HS-LS2-7)
HSN-Q.2.A	Define appropriate quantities for the purpose of descriptive modeling. (HS-LS2-1), (HS-LS2-2), (HS-LS2-7)
HSN-Q.3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-LS2-1), (HS-LS2-2), (HS-LS2-7)
HSS-ID.1.A	Represent data with plots on the real number line. (HS-LS2-6)
HSS-IC.1.A	Understand statistics as a process for making inferences about population parameters based on a random sample from that population. (HS-LS2-6)
HSS-IC.B.6	Evaluate reports based on data. (HS-LS2-6)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled "Disciplinary Core Ideas" is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.

May 2013 ©2013 Achieve, Inc. All rights reserved.