MS.Growth, Development, and Reproduction of Organisms

MS.Structure, Function, and Information Processing

Students who demonstrate understanding can:

MS-LS1-4. Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]
MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. [Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.] [Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.]
MS-LS3-1. Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. [Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.] [Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.]
MS-LS3-2. Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]
MS-LS4-5. Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. [Clarification Statement: Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy); and, on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

  • Develop and use a model to describe phenomena. (MS-LS3-1),(MS-LS3-2)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods.

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms

LS3.A: Inheritance of Traits

LS3.B: Variation of Traits

LS4.B: Natural Selection

Crosscutting Concepts

Cause and Effect

Structure and Function

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

  Connections to Engineering, Technology, and                      Applications of Science

 

Interdependence of Science, Engineering, and Technology

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

  • Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS4-1),(MS-LS4-2)

Science Addresses Questions About the Natural and Material World

  • Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. (MS-LS4-5)

Connections to other DCIs in this grade-band:

MS.LS1.A (MS-LS3-1); MS.LS2.A (MS-LS1-4),(MS-LS1-5); MS.LS4.A (MS-LS3-1)

Articulation of DCIs across grade-bands:

3.LS1.B (MS-LS1-4),(MS-LS1-5); 3.LS3.A (MS-LS1-5),(MS-LS3-1),(MS-LS3-2); 3.LS3.B (MS-LS3-1),(MS-LS3-2); HS.LS1.A (MS-LS3-1); HS.LS1.B (MS-LS3-1),(MS-LS3-2); HS.LS2.A (MS-LS1-4),(MS-LS1-5); HS.LS2.D (MS-LS1-4); HS.LS3.A (MS-LS3-1),(MS-LS3-2); HS.LS3.B (MS-LS3-1),(MS-LS3-2),(MS-LS4-5); HS.LS4.C (MS-LS4-5)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. (MS-LS1-4),(MS-LS1-5),((MS-LS3-1),(MS-LS3-2),(MS-LS4-5)
RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-5)
RST.6-8.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. (MS-LS3-1),(MS-LS3-2)
RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS3-1),(MS-LS3-2)
RI.6.8 Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. (MS-LS1-4)
WHST.6-8.1Write arguments focused on discipline content. (MS-LS1-4)
WHST.6-8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-5)
WHST.6-8.8Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.(MS-LS4-5)
WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS1-5)
SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-LS3-1),(MS-LS3-2)
Mathematics -
MP.4 Model with mathematics. (MS-LS3-2)
6.SP.A.2Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. (MS-LS1-4),(MS-LS1-5)
6.SP.B.4Summarize numerical data sets in relation to their context. (MS-LS1-4),(MS-LS1-5)
6.SP.B.5 Summarize numerical data sets in relation to their context. (MS-LS3-2)

MS.Structure, Function, and Information Processing

Students who demonstrate understanding can:

MS-LS1-4. Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]
MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. [Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.] [Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.]
MS-LS3-1. Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. [Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.] [Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.]
MS-LS3-2. Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]
MS-LS4-5. Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. [Clarification Statement: Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy); and, on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

  • Develop and use a model to describe phenomena. (MS-LS3-1),(MS-LS3-2)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods.

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms

LS3.A: Inheritance of Traits

LS3.B: Variation of Traits

LS4.B: Natural Selection

Crosscutting Concepts

Cause and Effect

Structure and Function

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

  Connections to Engineering, Technology, and                      Applications of Science

 

Interdependence of Science, Engineering, and Technology

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

  • Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS4-1),(MS-LS4-2)

Science Addresses Questions About the Natural and Material World

  • Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. (MS-LS4-5)

Connections to other DCIs in this grade-band:

MS.LS1.A (MS-LS3-1); MS.LS2.A (MS-LS1-4),(MS-LS1-5); MS.LS4.A (MS-LS3-1)

Articulation of DCIs across grade-bands:

3.LS1.B (MS-LS1-4),(MS-LS1-5); 3.LS3.A (MS-LS1-5),(MS-LS3-1),(MS-LS3-2); 3.LS3.B (MS-LS3-1),(MS-LS3-2); HS.LS1.A (MS-LS3-1); HS.LS1.B (MS-LS3-1),(MS-LS3-2); HS.LS2.A (MS-LS1-4),(MS-LS1-5); HS.LS2.D (MS-LS1-4); HS.LS3.A (MS-LS3-1),(MS-LS3-2); HS.LS3.B (MS-LS3-1),(MS-LS3-2),(MS-LS4-5); HS.LS4.C (MS-LS4-5)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. (MS-LS1-4),(MS-LS1-5),((MS-LS3-1),(MS-LS3-2),(MS-LS4-5)
RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-5)
RST.6-8.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. (MS-LS3-1),(MS-LS3-2)
RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS3-1),(MS-LS3-2)
RI.6.8 Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. (MS-LS1-4)
WHST.6-8.1Write arguments focused on discipline content. (MS-LS1-4)
WHST.6-8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-5)
WHST.6-8.8Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-LS4-5)
WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS1-5)
SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.(MS-LS3-1),(MS-LS3-2)
Mathematics -
MP.4 Model with mathematics. (MS-LS3-2)
6.SP.A.2Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. (MS-LS1-4),(MS-LS1-5)
6.SP.B.4Summarize numerical data sets in relation to their context. (MS-LS1-4),(MS-LS1-5)
6.SP.B.5 Summarize numerical data sets in relation to their context. (MS-LS3-2)

MS.Structure, Function, and Information Processing

Students who demonstrate understanding can:

MS-LS1-4. Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. [Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]
MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. [Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.] [Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.]
MS-LS3-1. Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. [Clarification Statement: Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.] [Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.]
MS-LS3-2. Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. [Clarification Statement: Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.]
MS-LS4-5. Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms. [Clarification Statement: Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy); and, on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

  • Develop and use a model to describe phenomena. (MS-LS3-1),(MS-LS3-2)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods.

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms

LS3.A: Inheritance of Traits

LS3.B: Variation of Traits

LS4.B: Natural Selection

Crosscutting Concepts

Cause and Effect

Structure and Function

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

  Connections to Engineering, Technology, and                      Applications of Science

 

Interdependence of Science, Engineering, and Technology

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

  • Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS4-1),(MS-LS4-2)

Science Addresses Questions About the Natural and Material World

  • Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. (MS-LS4-5)

Connections to other DCIs in this grade-band:

MS.LS1.A (MS-LS3-1); MS.LS2.A (MS-LS1-4),(MS-LS1-5); MS.LS4.A (MS-LS3-1)

Articulation of DCIs across grade-bands:

3.LS1.B (MS-LS1-4),(MS-LS1-5); 3.LS3.A (MS-LS1-5),(MS-LS3-1),(MS-LS3-2); 3.LS3.B (MS-LS3-1),(MS-LS3-2); HS.LS1.A (MS-LS3-1); HS.LS1.B (MS-LS3-1),(MS-LS3-2); HS.LS2.A (MS-LS1-4),(MS-LS1-5); HS.LS2.D (MS-LS1-4); HS.LS3.A (MS-LS3-1),(MS-LS3-2); HS.LS3.B (MS-LS3-1),(MS-LS3-2),(MS-LS4-5); HS.LS4.C (MS-LS4-5)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. (MS-LS1-4),(MS-LS1-5),((MS-LS3-1),(MS-LS3-2),(MS-LS4-5)
RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-5)
RST.6-8.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. (MS-LS3-1),(MS-LS3-2)
RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS3-1),(MS-LS3-2)
RI.6.8 Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. (MS-LS1-4)
WHST.6-8.1Write arguments focused on discipline content. (MS-LS1-4)
WHST.6-8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-5)
WHST.6-8.8Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-LS4-5)
WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS1-5)
SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest.(MS-LS3-1),(MS-LS3-2)
Mathematics -
MP.4 Model with mathematics. (MS-LS3-2)
6.SP.A.2Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. (MS-LS1-4),(MS-LS1-5)
6.SP.B.4Summarize numerical data sets in relation to their context. (MS-LS1-4),(MS-LS1-5)
6.SP.B.5 Summarize numerical data sets in relation to their context. (MS-LS3-2)

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.