MS.LS4Biological Evolution: Unity and Diversity

Students who demonstrate understanding can:

MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. [Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.]
MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.]
MS-LS4-3. Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. [Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.] [Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.]
MS-LS4-4. Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. [Clarification Statement: Emphasis is on using simple probability statements and proportional reasoning to construct explanations.]
MS-LS4-6. Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. [Clarification Statement: Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.] [Assessment Boundary: Assessment does not include Hardy Weinberg calculations.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 6–8 builds on K–5 experiences and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-LS4-1)

Disciplinary Core Ideas

LS4.A: Evidence of Common Ancestry and Diversity

LS4.B: Natural Selection

LS4.C: Adaptation

Crosscutting Concepts

Patterns

Cause and Effect

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

  • Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS4-1),(MS-LS4-2)

Connections to other DCIs in this grade-band:

MS.LS2.A (MS-LS4-4),(MS-LS4-6); MS.LS2.C (MS-LS4-6); MS.LS3.A (MS-LS4-2),(MS-LS4-4); MS.LS3.B (MS-LS4-2),(MS-LS4-4),(MS-LS4-6); MS.ESS1.C (MS-LS4-1),(MS-LS4-2),(MS-LS4-6); MS.ESS2.B (MS-LS4-1)

Articulation of DCIs across grade-bands:

3.LS3.B (MS-LS4-4); 3.LS4.A (MS-LS4-1),(MS-LS4-2); 3.LS4.B (MS-LS4-4); 3.LS4.C (MS-LS4-6); HS.LS2.A (MS-LS4-4),(MS-LS4-6); HS.LS2.C (MS-LS4-6); HS.LS3.B (MS-LS4-4),(MS-LS4-6); HS.LS4.A (MS-LS4-1),(MS-LS4-2),(MS-LS4-3); HS.LS4.B (MS-LS4-4),(MS-LS4-6); HS.LS4.C (MS-LS4-4),(MS-LS4-6); HS.ESS1.C (MS-LS4-1),(MS-LS4-2)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-LS4-1),(MS-LS4-2),(MS-LS4-3),(MS-LS4-4)
RST.6-8.7Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS4-1),(MS-LS4-3)
RST.6-8.9Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-LS4-3),(MS-LS4-4)
WHST.6-8.2Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS4-2),(MS-LS4-4)
WHST.6-8.9Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS4-2),(MS-LS4-4)
SL.8.1Engage effectively in a range of collaborative discussions (one-on-one, in groups, teacher-led) with diverse partners on grade 6 topics, texts, and issues, building on others’ ideas and expressing their own clearly. (MS-LS4-2),(MS-LS4-4)
SL.8.4Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (MS-LS4-2),(MS-LS4-4)
Mathematics -
MP.4Model with mathematics. (MS-LS4-6)
6.RP.A.1Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-LS4-4),(MS-LS4-6)
6.SP.B.5Summarize numerical data sets in relation to their context. (MS-LS4-4),(MS-LS4-6)
6.EE.B.6Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-LS4-1),(MS-LS4-2)
7.RP.A.2Recognize and represent proportional relationships between quantities. (MS-LS4-4),(MS-LS4-6)

MS.LS4Biological Evolution: Unity and Diversity

Students who demonstrate understanding can:

MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. [Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.]
MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.]
MS-LS4-3. Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. [Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.] [Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.]
MS-LS4-4. Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. [Clarification Statement: Emphasis is on using simple probability statements and proportional reasoning to construct explanations.]
MS-LS4-6. Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. [Clarification Statement: Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.] [Assessment Boundary: Assessment does not include Hardy Weinberg calculations.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 6–8 builds on K–5 experiences and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-LS4-1)

Disciplinary Core Ideas

LS4.A: Evidence of Common Ancestry and Diversity

LS4.B: Natural Selection

LS4.C: Adaptation

Crosscutting Concepts

Patterns

Cause and Effect

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

  • Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS4-1),(MS-LS4-2)

Connections to other DCIs in this grade-band:

MS.LS2.A (MS-LS4-4),(MS-LS4-6); MS.LS2.C (MS-LS4-6); MS.LS3.A (MS-LS4-2),(MS-LS4-4); MS.LS3.B (MS-LS4-2),(MS-LS4-4),(MS-LS4-6); MS.ESS1.C (MS-LS4-1),(MS-LS4-2),(MS-LS4-6); MS.ESS2.B (MS-LS4-1)

Articulation of DCIs across grade-bands:

3.LS3.B (MS-LS4-4); 3.LS4.A (MS-LS4-1),(MS-LS4-2); 3.LS4.B (MS-LS4-4); 3.LS4.C (MS-LS4-6); HS.LS2.A (MS-LS4-4),(MS-LS4-6); HS.LS2.C (MS-LS4-6); HS.LS3.B (MS-LS4-4),(MS-LS4-6); HS.LS4.A (MS-LS4-1),(MS-LS4-2),(MS-LS4-3); HS.LS4.B (MS-LS4-4),(MS-LS4-6); HS.LS4.C (MS-LS4-4),(MS-LS4-6); HS.ESS1.C (MS-LS4-1),(MS-LS4-2)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-LS4-1),(MS-LS4-2),(MS-LS4-3),(MS-LS4-4)
RST.6-8.7Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS4-1),(MS-LS4-3)
RST.6-8.9Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-LS4-3),(MS-LS4-4)
WHST.6-8.2Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS4-2),(MS-LS4-4)
WHST.6-8.9Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS4-2),(MS-LS4-4)
SL.8.1Engage effectively in a range of collaborative discussions (one-on-one, in groups, teacher-led) with diverse partners on grade 6 topics, texts, and issues, building on others’ ideas and expressing their own clearly. (MS-LS4-2),(MS-LS4-4)
SL.8.4Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (MS-LS4-2),(MS-LS4-4)
Mathematics -
MP.4Model with mathematics. (MS-LS4-6)
6.RP.A.1Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-LS4-4),(MS-LS4-6)
6.SP.B.5Summarize numerical data sets in relation to their context. (MS-LS4-4),(MS-LS4-6)
6.EE.B.6Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-LS4-1),(MS-LS4-2)
7.RP.A.2Recognize and represent proportional relationships between quantities. (MS-LS4-4),(MS-LS4-6)

MS.LS4Biological Evolution: Unity and Diversity

Students who demonstrate understanding can:

MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. [Clarification Statement: Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.]
MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.]
MS-LS4-3. Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. [Clarification Statement: Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.] [Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.]
MS-LS4-4. Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment. [Clarification Statement: Emphasis is on using simple probability statements and proportional reasoning to construct explanations.]
MS-LS4-6. Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time. [Clarification Statement: Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.] [Assessment Boundary: Assessment does not include Hardy Weinberg calculations.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 6–8 builds on K–5 experiences and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments.

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-LS4-1)

Disciplinary Core Ideas

LS4.A: Evidence of Common Ancestry and Diversity

LS4.B: Natural Selection

LS4.C: Adaptation

Crosscutting Concepts

Patterns

Cause and Effect

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

  • Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS4-1),(MS-LS4-2)

Connections to other DCIs in this grade-band:

MS.LS2.A (MS-LS4-4),(MS-LS4-6); MS.LS2.C (MS-LS4-6); MS.LS3.A (MS-LS4-2),(MS-LS4-4); MS.LS3.B (MS-LS4-2),(MS-LS4-4),(MS-LS4-6); MS.ESS1.C (MS-LS4-1),(MS-LS4-2),(MS-LS4-6); MS.ESS2.B (MS-LS4-1)

Articulation of DCIs across grade-bands:

3.LS3.B (MS-LS4-4); 3.LS4.A (MS-LS4-1),(MS-LS4-2); 3.LS4.B (MS-LS4-4); 3.LS4.C (MS-LS4-6); HS.LS2.A (MS-LS4-4),(MS-LS4-6); HS.LS2.C (MS-LS4-6); HS.LS3.B (MS-LS4-4),(MS-LS4-6); HS.LS4.A (MS-LS4-1),(MS-LS4-2),(MS-LS4-3); HS.LS4.B (MS-LS4-4),(MS-LS4-6); HS.LS4.C (MS-LS4-4),(MS-LS4-6); HS.ESS1.C (MS-LS4-1),(MS-LS4-2)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-LS4-1),(MS-LS4-2),(MS-LS4-3),(MS-LS4-4)
RST.6-8.7Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS4-1),(MS-LS4-3)
RST.6-8.9Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-LS4-3),(MS-LS4-4)
WHST.6-8.2Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS4-2),(MS-LS4-4)
WHST.6-8.9Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS4-2),(MS-LS4-4)
SL.8.1Engage effectively in a range of collaborative discussions (one-on-one, in groups, teacher-led) with diverse partners on grade 6 topics, texts, and issues, building on others’ ideas and expressing their own clearly. (MS-LS4-2),(MS-LS4-4)
SL.8.4Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (MS-LS4-2),(MS-LS4-4)
Mathematics -
MP.4Model with mathematics. (MS-LS4-6)
6.RP.A.1Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-LS4-4),(MS-LS4-6)
6.SP.B.5Summarize numerical data sets in relation to their context. (MS-LS4-4),(MS-LS4-6)
6.EE.B.6Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-LS4-1),(MS-LS4-2)
7.RP.A.2Recognize and represent proportional relationships between quantities. (MS-LS4-4),(MS-LS4-6)

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.