MS.Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

MS-LS1-6. Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. [Clarification Statement: Emphasis is on tracing movement of matter and flow of energy.] [Assessment Boundary: Assessment does not include the biochemical mechanisms of photosynthesis.]
MS-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. [Clarification Statement: Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.] [Assessment Boundary: Assessment does not include details of the chemical reactions for photosynthesis or respiration.]
MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. [Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.]
MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]
MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. [Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

  • Analyze and interpret data to provide evidence for phenomena. (MS-LS2-1)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based upon logical connections between evidence and explanations. (MS-LS1-6)
  • Science disciplines share common rules of obtaining and evaluating empirical evidence. (MS-LS2-4)

Disciplinary Core Ideas

LS1.C: Organization for Matter and Energy Flow in Organisms

LS2.A: Interdependent Relationships in Ecosystems

LS2.B: Cycle of Matter and Energy Transfer in Ecosystems

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

PS3.D: Energy in Chemical Processes and Everyday Life

  • The chemical reaction by which plants produce complex food molecules (sugars) requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic molecules and release oxygen. (secondary to MS-LS1-6)
  • Cellular respiration in plants and animals involve chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials. (secondary to MS-LS1-7)

Crosscutting Concepts

Cause and Effect

  • Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-LS2-1)
Energy and Matter

Stability and Change

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

  • Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS2-3)

Connections to other DCIs in this grade-band:

MS.PS1.B (MS-LS1-6),(MS-LS1-7),(MS-LS2-3); MS.LS4.C (MS-LS2-4); MS.LS4.D (MS-LS2-4); MS.ESS2.A (MS-LS1-6),(MS-LS2-3),(MS-LS2-4); MS.ESS3.A (MS-LS2-1),(MS-LS2-4); MS.ESS3.C (MS-LS2-1),(MS-LS2-4)

Articulation of DCIs across grade-bands:

3.LS2.C (MS-LS2-1),(MS-LS2-4); 3.LS4.D (MS-LS2-1),(MS-LS2-4); 5.PS3.D (MS-LS1-6),(MS-LS1-7); 5.LS1.C (MS-LS1-6),(MS-LS1-7); 5.LS2.A (MS-LS1-6),(MS-LS2-1),(MS-LS2-3); 5.LS2.B (MS-LS1-6),(MS-LS1-7);(MS-LS2-3); HS.PS1.B (MS-LS1-6),(MS-LS1-7); HS.PS3.B (MS-LS2-3); HS.LS1.C (MS-LS1-6),(HS-LS1-7),(MS-LS2-3); HS.LS2.A (MS-LS2-1); HS.LS2.B (MS-LS1-6),(MS-LS1-7),(MS-LS2-3); HS.LS2.C (MS-LS2-4),HS.LS4.C (MS-LS2-1),(MS-LS2-4); HS.LS4.D (MS-LS2-1),(MS-LS2-4); HS.ESS2.A (MS-LS2-3); HS.ESS2.D (MS-LS1-6); HS.ESS2.E (MS-LS2-4); HS.ESS3.A (MS-LS2-1); HS.ESS3.B (MS-LS2-4); HS.ESS3.C (MS-LS2-4)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. ,(MS-LS1-6),(MS-LS2-1),(MS-LS2-4)
RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-6)
RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS2-1)
RI.8.8 Trace and evaluate the argument and specific claims in a text, assessing whether the reasoning is sound and the evidence is relevant and sufficient to support the claims. (MS-LS2-4)
WHST.6-8.1Write arguments focused on discipline content. (MS-LS2-4)
WHST.6-8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-6)
WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS1-6)
SL.8.5Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-LS1-7),(MS-LS2-3)
Mathematics -
6.EE.C.9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. (MS-LS1-6),(MS-LS2-3)

MS.Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

MS-LS1-6. Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. [Clarification Statement: Emphasis is on tracing movement of matter and flow of energy.] [Assessment Boundary: Assessment does not include the biochemical mechanisms of photosynthesis.]
MS-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. [Clarification Statement: Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.] [Assessment Boundary: Assessment does not include details of the chemical reactions for photosynthesis or respiration.]
MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. [Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.]
MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]
MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. [Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

  • Analyze and interpret data to provide evidence for phenomena. (MS-LS2-1)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based upon logical connections between evidence and explanations. (MS-LS1-6)
  • Science disciplines share common rules of obtaining and evaluating empirical evidence. (MS-LS2-4)

Disciplinary Core Ideas

LS1.C: Organization for Matter and Energy Flow in Organisms

LS2.A: Interdependent Relationships in Ecosystems

LS2.B: Cycle of Matter and Energy Transfer in Ecosystems

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

PS3.D: Energy in Chemical Processes and Everyday Life

  • The chemical reaction by which plants produce complex food molecules (sugars) requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic molecules and release oxygen. (secondary to MS-LS1-6)
  • Cellular respiration in plants and animals involve chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials. (secondary to MS-LS1-7)

Crosscutting Concepts

Cause and Effect

  • Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-LS2-1)
Energy and Matter

Stability and Change

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

  • Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS2-3)

Connections to other DCIs in this grade-band:

MS.PS1.B (MS-LS1-6),(MS-LS1-7),(MS-LS2-3); MS.LS4.C (MS-LS2-4); MS.LS4.D (MS-LS2-4); MS.ESS2.A (MS-LS1-6),(MS-LS2-3),(MS-LS2-4); MS.ESS3.A (MS-LS2-1),(MS-LS2-4); MS.ESS3.C (MS-LS2-1),(MS-LS2-4)

Articulation of DCIs across grade-bands:

3.LS2.C (MS-LS2-1),(MS-LS2-4); 3.LS4.D (MS-LS2-1),(MS-LS2-4); 5.PS3.D (MS-LS1-6),(MS-LS1-7); 5.LS1.C (MS-LS1-6),(MS-LS1-7); 5.LS2.A (MS-LS1-6),(MS-LS2-1),(MS-LS2-3); 5.LS2.B (MS-LS1-6),(MS-LS1-7);(MS-LS2-3); HS.PS1.B (MS-LS1-6),(MS-LS1-7); HS.PS3.B (MS-LS2-3); HS.LS1.C (MS-LS1-6),(HS-LS1-7),(MS-LS2-3); HS.LS2.A (MS-LS2-1); HS.LS2.B (MS-LS1-6),(MS-LS1-7),(MS-LS2-3); HS.LS2.C (MS-LS2-4),HS.LS4.C (MS-LS2-1),(MS-LS2-4); HS.LS4.D (MS-LS2-1),(MS-LS2-4); HS.ESS2.A (MS-LS2-3); HS.ESS2.D (MS-LS1-6); HS.ESS2.E (MS-LS2-4); HS.ESS3.A (MS-LS2-1); HS.ESS3.B (MS-LS2-4); HS.ESS3.C (MS-LS2-4)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. ,(MS-LS1-6),(MS-LS2-1),(MS-LS2-4)
RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-6)
RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS2-1)
RI.8.8 Trace and evaluate the argument and specific claims in a text, assessing whether the reasoning is sound and the evidence is relevant and sufficient to support the claims. (MS-LS2-4)
WHST.6-8.1Write arguments focused on discipline content. (MS-LS2-4)
WHST.6-8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-6)
WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS1-6)
SL.8.5Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-LS1-7),(MS-LS2-3)
Mathematics -
6.EE.C.9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. (MS-LS1-6),(MS-LS2-3)

MS.Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

MS-LS1-6. Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. [Clarification Statement: Emphasis is on tracing movement of matter and flow of energy.] [Assessment Boundary: Assessment does not include the biochemical mechanisms of photosynthesis.]
MS-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. [Clarification Statement: Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.] [Assessment Boundary: Assessment does not include details of the chemical reactions for photosynthesis or respiration.]
MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. [Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.]
MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]
MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. [Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]
The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

  • Analyze and interpret data to provide evidence for phenomena. (MS-LS2-1)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge is Based on Empirical Evidence

  • Science knowledge is based upon logical connections between evidence and explanations. (MS-LS1-6)
  • Science disciplines share common rules of obtaining and evaluating empirical evidence. (MS-LS2-4)

Disciplinary Core Ideas

LS1.C: Organization for Matter and Energy Flow in Organisms

LS2.A: Interdependent Relationships in Ecosystems

LS2.B: Cycle of Matter and Energy Transfer in Ecosystems

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

PS3.D: Energy in Chemical Processes and Everyday Life

  • The chemical reaction by which plants produce complex food molecules (sugars) requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic molecules and release oxygen. (secondary to MS-LS1-6)
  • Cellular respiration in plants and animals involve chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials. (secondary to MS-LS1-7)

Crosscutting Concepts

Cause and Effect

  • Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-LS2-1)
Energy and Matter

Stability and Change

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

  • Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS2-3)

Connections to other DCIs in this grade-band:

MS.PS1.B (MS-LS1-6),(MS-LS1-7),(MS-LS2-3); MS.LS4.C (MS-LS2-4); MS.LS4.D (MS-LS2-4); MS.ESS2.A (MS-LS1-6),(MS-LS2-3),(MS-LS2-4); MS.ESS3.A (MS-LS2-1),(MS-LS2-4); MS.ESS3.C (MS-LS2-1),(MS-LS2-4)

Articulation of DCIs across grade-bands:

3.LS2.C (MS-LS2-1),(MS-LS2-4); 3.LS4.D (MS-LS2-1),(MS-LS2-4); 5.PS3.D (MS-LS1-6),(MS-LS1-7); 5.LS1.C (MS-LS1-6),(MS-LS1-7); 5.LS2.A (MS-LS1-6),(MS-LS2-1),(MS-LS2-3); 5.LS2.B (MS-LS1-6),(MS-LS1-7);(MS-LS2-3); HS.PS1.B (MS-LS1-6),(MS-LS1-7); HS.PS3.B (MS-LS2-3); HS.LS1.C (MS-LS1-6),(HS-LS1-7),(MS-LS2-3); HS.LS2.A (MS-LS2-1); HS.LS2.B (MS-LS1-6),(MS-LS1-7),(MS-LS2-3); HS.LS2.C (MS-LS2-4),HS.LS4.C (MS-LS2-1),(MS-LS2-4); HS.LS4.D (MS-LS2-1),(MS-LS2-4); HS.ESS2.A (MS-LS2-3); HS.ESS2.D (MS-LS1-6); HS.ESS2.E (MS-LS2-4); HS.ESS3.A (MS-LS2-1); HS.ESS3.B (MS-LS2-4); HS.ESS3.C (MS-LS2-4)

Common Core State Standards Connections:

ELA/Literacy -
RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. ,(MS-LS1-6),(MS-LS2-1),(MS-LS2-4)
RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-6)
RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS2-1)
RI.8.8 Trace and evaluate the argument and specific claims in a text, assessing whether the reasoning is sound and the evidence is relevant and sufficient to support the claims. (MS-LS2-4)
WHST.6-8.1Write arguments focused on discipline content. (MS-LS2-4)
WHST.6-8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-6)
WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS1-6)
SL.8.5Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-LS1-7),(MS-LS2-3)
Mathematics -
6.EE.C.9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. (MS-LS1-6),(MS-LS2-3)

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.