2-PS1-4 Matter and Its Interactions

2-PS1-4   Matter and Its Interactions

Students who demonstrate understanding can:

2-PS1-4. Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. [Clarification Statement: Examples of reversible changes could include materials such as water and butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and heating paper.]
The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Engaging in Argument from Evidence

Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

  • Science searches for cause and effect relationships to explain natural events.

Disciplinary Core Ideas

PS1.B: Chemical Reactions

Crosscutting Concepts

Cause and Effect

Connections to other DCIs in second grade: N/A

Articulation of DCIs across grade-levels:

5.PS1.B

Common Core State Standards Connections:

ELA/Literacy —
RI.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-PS1-4)
RI.2.3 Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-PS1-4)
RI.2.8Describe how reasons support specific points the author makes in a text. (2-PS1-4)
W.2.1Write opinion pieces in which they introduce the topic or book they are writing about, state an opinion, supply reasons that support the opinion, use linking words (e.g., because, and, also) to connect opinion and reasons, and provide a concluding statement or section. (2-PS1-4)

2-PS1-4   Matter and Its Interactions

Students who demonstrate understanding can:

2-PS1-4. Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. [Clarification Statement: Examples of reversible changes could include materials such as water and butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and heating paper.]
The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Engaging in Argument from Evidence

Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

  • Science searches for cause and effect relationships to explain natural events.

Disciplinary Core Ideas

PS1.B: Chemical Reactions

Crosscutting Concepts

Cause and Effect

Connections to other DCIs in second grade: N/A

Articulation of DCIs across grade-levels:

5.PS1.B

Common Core State Standards Connections:

ELA/Literacy —
RI.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-PS1-4)
RI.2.3 Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-PS1-4)
RI.2.8Describe how reasons support specific points the author makes in a text. (2-PS1-4)
W.2.1Write opinion pieces in which they introduce the topic or book they are writing about, state an opinion, supply reasons that support the opinion, use linking words (e.g., because, and, also) to connect opinion and reasons, and provide a concluding statement or section. (2-PS1-4)

2-PS1-4   Matter and Its Interactions

Students who demonstrate understanding can:

2-PS1-4. Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. [Clarification Statement: Examples of reversible changes could include materials such as water and butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and heating paper.]
The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Engaging in Argument from Evidence

Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

         Connections to Nature of Science

 

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

  • Science searches for cause and effect relationships to explain natural events.

Disciplinary Core Ideas

PS1.B: Chemical Reactions

Crosscutting Concepts

Cause and Effect

Connections to other DCIs in second grade: N/A

Articulation of DCIs across grade-levels:

5.PS1.B

Common Core State Standards Connections:

ELA/Literacy —
RI.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-PS1-4)
RI.2.3 Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-PS1-4)
RI.2.8Describe how reasons support specific points the author makes in a text. (2-PS1-4)
W.2.1Write opinion pieces in which they introduce the topic or book they are writing about, state an opinion, supply reasons that support the opinion, use linking words (e.g., because, and, also) to connect opinion and reasons, and provide a concluding statement or section. (2-PS1-4)

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.