HS-LS1-5 From Molecules to Organisms: Structures and Processes

HS-LS1-5    From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. [Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.]
The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.

Disciplinary Core Ideas

LS1.C: Organization for Matter and Energy Flow in Organisms

Crosscutting Concepts

Energy and Matter

Connections to other DCIs in this grade-band:

HS.PS1.B ; HS.PS3.B

Articulation of DCIs across grade-bands:

MS.PS1.B ; MS.PS3.D ; MS.LS1.C ; MS.LS2.B

Common Core State Standards Connections:

ELA/Literacy -
SL.11-12.5Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-5)

HS-LS1-5    From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. [Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.]
The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.

Disciplinary Core Ideas

LS1.C: Organization for Matter and Energy Flow in Organisms

Crosscutting Concepts

Energy and Matter

Connections to other DCIs in this grade-band:

HS.PS1.B ; HS.PS3.B

Articulation of DCIs across grade-bands:

MS.PS1.B ; MS.PS3.D ; MS.LS1.C ; MS.LS2.B

Common Core State Standards Connections:

ELA/Literacy -
SL.11-12.5Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-5)

HS-LS1-5    From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. [Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.]
The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.

Disciplinary Core Ideas

LS1.C: Organization for Matter and Energy Flow in Organisms

Crosscutting Concepts

Energy and Matter

Connections to other DCIs in this grade-band:

HS.PS1.B ; HS.PS3.B

Articulation of DCIs across grade-bands:

MS.PS1.B ; MS.PS3.D ; MS.LS1.C ; MS.LS2.B

Common Core State Standards Connections:

ELA/Literacy -
SL.11-12.5Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-5)

* The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea.

The section entitled “Disciplinary Core Ideas” is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas. Integrated and reprinted with permission from the National Academy of Sciences.